First draft of redex core language.

This commit is contained in:
William J. Bowman 2014-07-12 21:00:04 +02:00
commit 4b1735d435

227
redex-core.rkt Normal file
View File

@ -0,0 +1,227 @@
#lang racket/base
(require
redex/reduction-semantics)
#;(provide
define-inductive-type
match
define-fun
define-rec
lambda)
;; References:
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
;; http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf
;; Core language. Surface langauge should provide short-hand, such as
;; -> for non-dependent function types, and type inference.
(define-language dtracketL
(i ::= natural)
(U ::= Type (Unv i))
(x ::= variable-not-otherwise-mentioned)
;; TODO: Having 2 binders is stupid.
(v ::= (Π (x : t) t) (λ (x : t) t) x U)
(t e ::= v (t t) (t : t)))
(module+ test
(require (except-in rackunit check))
(check-true (redex-match? dtracketL U (term Type)))
(check-true (redex-match? dtracketL U (term (Unv 0))))
(check-true (redex-match? dtracketL e (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (redex-match? dtracketL v (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (redex-match? dtracketL t (term (λ (x_0 : (Unv 0)) x_0)))))
;; 'A'
;; Types of Universes
;; Replace with sub-typing
(define-judgment-form dtracketL
#:mode (unv-ok I O)
#:contract (unv-ok U U)
[-----------------
(unv-ok Type (Unv 0))]
[(where i_2 ,(sub1 (term i_0)))
(unv-ok (Unv i_2) (Unv i_3))
(where i_1 ,(add1 (term i_3)))
-----------------
(unv-ok (Unv i_0) (Unv i_1))])
;; 'R'
;; Kinding, I think
(define-judgment-form dtracketL
#:mode (unv-kind I I O)
#:contract (unv-kind U U U)
[----------------
(unv-kind Type Type Type)]
[----------------
(unv-kind (Unv i) Type Type)]
[(where i_3 ,(max (term i_1) (term i_2)))
----------------
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
;; NB: Substitution is hard
(define-metafunction dtracketL
subst : t x t -> t
[(subst x x t) t]
[(subst x_0 x t) x]
[(subst (Π (x : t_0) t_1) x t) (Π (x : t_0) t_1)]
[(subst (λ (x : t_0) t_1) x t) (λ (x : t_0) t_1)]
[(subst (Π (x_0 : t_0) t_1) x t) (Π (x_0 : t_0) (subst t_1 x t))]
[(subst (λ (x_0 : t_0) t_1) x t) (λ (x_0 : t_0) (subst t_1 x t))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))])
(define-extended-language dtracket-redL dtracketL
(E hole (E t) (E : t)))
;; TODO: Congruence-closure instead of β
(define ==β
(reduction-relation dtracket-redL
(==> ((Π (x : t_0) t_1) t_2)
(subst t_1 x t_2))
(==> ((λ (x : t) e_0) e_1)
(subst e_0 x e_1))
with
[(--> (in-hole E t_0) (in-hole E t_1))
(==> t_0 t_1)]))
;; TODO: Bi-directional and inference?
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
(define-extended-language dtracket-typingL dtracketL
(Γ (Γ x : t)))
;; NB: Depends on clause order
(define-metafunction dtracket-typingL
lookup : Γ x -> t or #f
[(lookup x) #f]
[(lookup (Γ x : t) x) t]
[(lookup (Γ x_0 : t_0) x_1) (lookup Γ x_1)])
;; NB: Depends on clause order
(define-metafunction dtracket-typingL
remove : Γ x -> Γ
[(remove x) ]
[(remove (Γ x : t) x) Γ]
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
#;(define-judgment-form dtracket-typingL
#:mode (synth I I O)
#:contract (synth Γ t t)
[(unv-ok U_0 U_1)
----------------- ;; DTR-SAxiom
(synth U_0 U_1)]
[(synth (remove Γ x) t U)
----------------- ;; DTR-SStart
(synth (Γ x : t) x t)]
[(synth Γ t t_1) (synth Γ t_0 U)
----------------- ;; DTR-SWeakening
(synth (Γ x : t_0) t t_1)]
[(check Γ e t)
----------------- ;; DTR-SSwitch
(synth Γ (e : t) t)]
[(synth Γ e_0 (Π (x : t_0) t_1))
(check Γ e_1 t_0)
----------------- ;; DTR-Application
(synth Γ (e_0 e_1) (subst t_1 x e_1))])
#;(define-judgment-form dtracket-typingL
#:mode (check I I I)
#:contract (check Γ t t)
[(check (Γ x : t_0) e t_1)
(synth Γ (Π (x : t_0) t_1) U)
----------------- ;; DTR-CAbstraction
(check Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(synth Γ t_0 U_1)
(synth (Γ x : t_0) t U_2)
(unv-kind U_1 U_2 U)
----------------- ;; DTR-CProduct
(check Γ (Π (x : t_0) t) U)]
[(check Γ t t_1) (synth Γ t_0 U)
----------------- ;; DTR-CWeakening
(check (Γ x : t_0) t t_1)]
[(synth Γ e t_1)
(synth Γ t_0 U)
(side-condition ,(term (first (apply-reduction-relation* ==β (term t_0) (term t_1)))))
----------------- ;; DTR-CConversion
(check Γ e t_0)]
[(synth Γ e t)
----------------- ;; DTR-CSwitch
(check Γ e t)])
(define-judgment-form dtracket-typingL
#:mode (types I I O)
#:contract (types Γ e t)
[(unv-ok U_0 U_1)
----------------- ;; DTR-Axiom
(types U_0 U_1)]
[(where t (lookup Γ x))
(types (remove Γ x) t U)
----------------- ;; DTR-SStart
(types Γ x t)]
[(types Γ t t_1) (types Γ t_0 U)
----------------- ;; DTR-Weakening
(types (Γ x : t_0) t t_1)]
[(types Γ t_0 U_1)
(types (Γ x : t_0) t U_2)
(unv-kind U_1 U_2 U)
----------------- ;; DTR-Product
(types Γ (Π (x : t_0) t) U)]
[(types Γ e_0 (Π (x : t_0) t_1))
(types Γ e_1 t_0)
----------------- ;; DTR-Application
(types Γ (e_0 e_1) (subst t_1 x e_1))]
[(types (Γ x : t_0) e t_1)
(types Γ (Π (x : t_0) t_1) U)
----------------- ;; DTR-Abstraction
(types Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
;; This rule is no good for algorithmic checking; Redex infinitly
;; searches it.
;; Perhaps something closer to Zombies = type would be better.
#;[(types Γ e (in-hole E t))
(where t_0 (in-hole E t))
(where t_1 ,(car (apply-reduction-relation* ==β (term t_0))))
(types Γ t_1 U)
----------------- ;; DTR-Conversion
(types Γ e t_1)])
(module+ test
(check-true (judgment-holds (types Type (Unv 0))))
(check-true (judgment-holds (types ( x : Type) Type (Unv 0))))
(check-true (judgment-holds (types ( x : Type) x Type)))
(check-true (judgment-holds (types (( x_0 : Type) x_1 : Type)
(Π (x_3 : x_0) x_1) Type)))
(check-true (judgment-holds (types (λ (x : Type) x) (Π (x : Type) Type)))))
(define-judgment-form dtracket-typingL
#:mode (type-check I I I)
#:contract (type-check Γ e t)
[(types Γ e t)
---------------
(type-check Γ e t)])