Added axioms; added test, but it's *slow*
This commit is contained in:
parent
961a5b7bb9
commit
572b66aac4
|
@ -47,6 +47,7 @@
|
||||||
[dep-void void])
|
[dep-void void])
|
||||||
begin
|
begin
|
||||||
Type
|
Type
|
||||||
|
assume
|
||||||
;; DYI syntax extension
|
;; DYI syntax extension
|
||||||
define-syntax
|
define-syntax
|
||||||
begin-for-syntax
|
begin-for-syntax
|
||||||
|
@ -483,3 +484,15 @@
|
||||||
(extend-Γ/term! gamma id (type-infer/term e))
|
(extend-Γ/term! gamma id (type-infer/term e))
|
||||||
(add-binding/term! id e)
|
(add-binding/term! id e)
|
||||||
#'(void))]))
|
#'(void))]))
|
||||||
|
|
||||||
|
(define-syntax (assume syn)
|
||||||
|
(syntax-parse syn
|
||||||
|
[(_ id:id t)
|
||||||
|
(let ()
|
||||||
|
(printf "WARNING: Assuming ~a of type ~a.~n"
|
||||||
|
(syntax->datum #'id)
|
||||||
|
(syntax->datum #'t))
|
||||||
|
;; NB: Have to roll our own namespace rather than use built-in define so id is resolved at
|
||||||
|
;; compile time in redex, and at runtime in racket.
|
||||||
|
(extend-Γ/syn! gamma #'id #'t)
|
||||||
|
#'(void))]))
|
||||||
|
|
38
cur-test/cur/tests/stdlib/nat-theorem.rkt
Normal file
38
cur-test/cur/tests/stdlib/nat-theorem.rkt
Normal file
|
@ -0,0 +1,38 @@
|
||||||
|
#lang cur
|
||||||
|
|
||||||
|
(require
|
||||||
|
cur/stdlib/sugar
|
||||||
|
cur/stdlib/nat
|
||||||
|
cur/stdlib/prop)
|
||||||
|
|
||||||
|
|
||||||
|
(assume f_equal
|
||||||
|
(-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B))
|
||||||
|
(== A a1 a2)
|
||||||
|
(== B (f a1) (f a2))))
|
||||||
|
(define plus_0_n
|
||||||
|
(elim Nat Type
|
||||||
|
(lambda (n : Nat) (== Nat n (plus z n)))
|
||||||
|
(refl Nat z)
|
||||||
|
(lambda (n : Nat) (ih : (== Nat n (plus z n)))
|
||||||
|
(f_equal Nat n (plus z n) Nat s ih))))
|
||||||
|
|
||||||
|
;; TODO: implicits
|
||||||
|
;; No way to define axioms in Cur, yet, although it is a simple change.
|
||||||
|
;; No implicits in Cur, yet
|
||||||
|
#;(define (plus_0_n (n : Nat))
|
||||||
|
(match n
|
||||||
|
;; TODO: This should work
|
||||||
|
#:return (== Nat n (plus z n))
|
||||||
|
[z (refl Nat z)]
|
||||||
|
[(s (n : Nat))
|
||||||
|
(f_equal Nat n (plus z n) Nat s (recur n))]))
|
||||||
|
(:: plus_0_n (forall (n : Nat) (== Nat n (plus z n))))
|
||||||
|
|
||||||
|
#;(define (plus_n_Sm (n : Nat) (m : Nat))
|
||||||
|
(elim Nat Type
|
||||||
|
(lambda (n : Nat) (== Nat (plus n m) (plus m n)))
|
||||||
|
(plus_n_0 m)
|
||||||
|
(lambda (y : Nat) (ih : ))
|
||||||
|
(elim == Type)))
|
||||||
|
#;(:: plus_n_Sm (forall (n : Nat) (m : Nat) (== (s (plus n m)) (plus n (s m)))))
|
Loading…
Reference in New Issue
Block a user