Serious reorganization of examples file

This commit is contained in:
William J. Bowman 2014-07-28 18:24:53 +02:00
parent 2c6daa6224
commit 58619df30b

View File

@ -5,6 +5,14 @@
;; seems to with check-equal?
(require rackunit)
;; -------------------
;; Define inductive data
(data true : Type (T : true))
(data false : Type)
;; -------------------
;; Look, syntax extension!
(define-syntax (-> syn)
(syntax-case syn ()
@ -20,49 +28,51 @@
(lambda (y : (-> nat nat))
(lambda (x : nat) (y x))))
;; -------------------
;; Lexical scoping! I can reuse the name nat!
(define nat-is-just-a-name (lambda (nat : Type) nat))
(data true : Type (T : true))
(data false : Type)
;; Real meta-programming! Syntax is just data.
(define-syntax (inhabit-type syn)
(syntax-case syn (true false nat)
[(_ true) #'T]
[(_ nat) #'z]
[(_ false)
(raise-syntax-error 'inhabit
"Actually, this type is unhabited" syn)]
[(_ t)
(raise-syntax-error 'inhabit
"Sorry, this type is too much for me" syn)]))
(define hmm (inhabit-type true))
(check-equal? hmm T)
#;(define is-this-inhabited (inhabit-type false))
;; -------------------
;; Reuse some familiar syntax
(define y (lambda (x : true) x))
(define (y1 (x : true)) x)
(define (y2 (x1 : true) (x2 : true)) x1)
;; -------------------
;; Unit test dependently typed code!
(check-equal? (y2 T T) T)
;; -------------------
;; Write functions on inductive data
(define (plus (n1 : nat) (n2 : nat))
;; TODO: This is not plus! Plus require recursion and I don't have
;; recursion!
;(define (plus (n1 : nat) (n2 : nat))
; (case n1
; [z n2]
; ;; TODO: Add macro to enable writing this line as:
; ;; [(s x) (s (s x))]
; [s (λ (x : nat) (s (s x)))]))
;
;(define four (plus (s (s z)) (s (s z))))
;(check-equal? four (s (s (s z))))
(define (add1 (n1 : nat))
(case n1
[z n2]
[z (s z)]
;; TODO: Add macro to enable writing this line as:
;; [(s x) (s (s x))]
[s (λ (x : nat) (s (s x)))]))
(define four (plus (s (s z)) (s (s z))))
(check-equal? four (s (s (s z))))
(define two (add1 (s z)))
(check-equal? two (s (s z)))
;; -------------------
;; It's annoying to have to write things explicitly curried
;; Macros to the rescue
;; Macros to the rescue!
(define-syntax forall*
(syntax-rules (:)
[(_ (a : t) (ar : tr) ... b)
@ -81,6 +91,7 @@
(conj : (forall* (A : Type) (B : Type)
(x : A) (y : B) (and A B))))
;; -------------------
;; Prove interesting theorems!
#|
@ -115,8 +126,101 @@
(ab : (and^ P Q))
(and^ P Q))))
T)
(define proof:and^-is-symmetric
(lambda* (P : Type) (Q : Type) (ab : (and^ P Q))
(conj^ Q P (snd P Q ab) (fst P Q ab))))
(check-equal? T (thm:and^-is-symmetric proof:and^-is-symmetric))
;; -------------------
;; Gee, I wish there was a special syntax for theorems and proofs so I could think of
;; them as seperate from types and programs.
(define-syntax-rule (define-theorem name prop)
(define (name (x : prop)) T))
(define-syntax-rule (qed thm pf)
(check-equal? T (thm pf)))
(define-theorem thm:and^-is-symmetric^
(forall* (P : Type) (Q : Type) (ab : (and^ P Q)) (and^ P Q)))
(qed thm:and^-is-symmetric^ proof:and^-is-symmetric)
;; -------------------
;; Gee, I wish I had special syntax for defining types like I do for
;; defining functions.
(define-syntax-rule (define-type (name (a : t) ...) body)
(define name (forall* (a : t) ... body)))
(define-type (not (A : Type)) (-> A false))
(define-type (and^^ (A : Type) (B : Type))
(forall* (C : Type) (f : (forall* (a : A) (b : B) C)) C))
#|
TODO: Can't seem to pattern match on a inductive with 0 constructors...
should result in a term of any type, I think.
(define-theorem thm:absurdidty
(forall (P : Type) (A : Type) (-> (and^ A (not A)) P)))
(define (proof:absurdidty (P : Type) (A : Type) (a*nota : (and^ A (not A)))
((snd A (not A) a*nota) (fst A (not A) a*nota))))
|#
;; -------------------
;; Automate theorem proving! With real meta-programming, syntax is just data.
(define-syntax (inhabit-type syn)
(syntax-case syn (true false nat forall :)
[(_ true) #'T]
[(_ nat) #'z]
[(_ false)
(raise-syntax-error 'inhabit
"Actually, this type is unhabited" syn)]
;; TODO: We want all forall*s to be expanded by this point. Should
;; look into Racket macro magic to expand syn before matching on it.
[(_ (forall (x : t0) t1))
;; TODO: Should carry around assumptions to enable inhabhit-type to use
;; them
#'(lambda (x : t0) (inhabit-type t1))]
[(_ t)
(raise-syntax-error 'inhabit
"Sorry, this type is too much for me" syn)]))
(define-theorem thm:true-is-proveable true)
(qed thm:true-is-proveable (inhabit-type true))
(define-theorem thm:anything-implies-true (forall (P : Type) true))
(qed thm:true-is-proveable (inhabit-type (forall (P : Type) true)))
#;(define is-this-inhabited? (inhabit-type false))
;; -------------------
;; Unit test your theorems before proving them!
(define-syntax ->*
(syntax-rules ()
[(->* a) a]
[(->* a a* ...)
(-> a (->* a* ...))]))
;; TODO: Ought to have some syntactic sugar for doing this.
;; Or a different representation of theorems.
(define type-thm:true?
(forall* (A : Type) (B : Type) (P : Type)
;; If A implies P and (and A B) then P
(->* (-> A P) (and^ A B) P)))
(define-theorem thm:true? type-thm:true?)
(qed (lambda (x : (type-thm:true? true true true)) T)
;; TODO: inhabit-type ought to be able to reduce (type-thm:true? true true true)
;; but can't. Maybe instead there should be a reduce tactic/macro.
(inhabit-type (forall (a : (-> true true))
(forall (f : (and^ true true))
true))))
;; TODO: Interopt with Racket at runtime via contracts?!?!