Simplify parts of Curnel implementation

This commit is contained in:
William J. Bowman 2016-02-22 19:31:40 -05:00
parent db7471c9d6
commit 59e241ecb2
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A
3 changed files with 28 additions and 17 deletions

View File

@ -26,11 +26,11 @@
(define-language ttL
(i j k ::= natural)
(U ::= (Unv i))
(D x c ::= variable-not-otherwise-mentioned)
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e) (elim D U))
;; Δ (signature). (inductive-name : type ((constructor : type) ...))
;; NB: Δ is a map from a name x to a pair of it's type and a map of constructor names to their types
(Δ ::= (Δ (D : t ((c : t) ...))))
(D x c ::= variable-not-otherwise-mentioned)
#:binding-forms
(λ (x : t) e #:refers-to x)
(Π (x : t_0) t_1 #:refers-to x))
@ -44,6 +44,8 @@
;;; ------------------------------------------------------------------------
;;; Universe typing
;; Universe types
;; aka Axioms A of a PTS
(define-judgment-form ttL
#:mode (unv-type I O)
#:contract (unv-type U U)
@ -53,6 +55,7 @@
(unv-type (Unv i_0) (Unv i_1))])
;; Universe predicativity rules. Impredicative in (Unv 0)
;; aka Rules R of a PTS
(define-judgment-form ttL
#:mode (unv-pred I I O)
#:contract (unv-pred U U U)
@ -189,8 +192,8 @@
;; TODO: Test
#| TODO:
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
| that (equivalent t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)? Yes.
| that (convert t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is convert to (Ξ-apply Ξ t)? Yes.
|#
(define-metafunction tt-ctxtL
Ξ-apply : Ξ t -> t
@ -550,16 +553,6 @@
(where (_ e_r)
,(car (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)))])
(define-judgment-form tt-redL
#:mode (equivalent I I I)
#:contract (equivalent Δ t t)
[(where t_2 (reduce Δ t_0))
(where t_3 (reduce Δ t_1))
(side-condition (α-equivalent? t_2 t_3))
----------------- "≡-αβ"
(equivalent Δ t_0 t_1)])
;;; ------------------------------------------------------------------------
;;; Type checking and synthesis
@ -569,6 +562,24 @@
(Γ ::= (Γ x : t)))
(define Γ? (redex-match? tt-typingL Γ))
(define-judgment-form tt-typingL
#:mode (convert I I I I)
#:contract (convert Δ Γ t t)
[(side-condition ,(<= (term i_0) (term i_1)))
----------------- "≼-Unv"
(convert Δ Γ (Unv i_0) (Unv i_1))]
[(where t_2 (reduce Δ t_0))
(where t_3 (reduce Δ t_1))
(side-condition (α-equivalent? t_2 t_3))
----------------- "≼-αβ"
(convert Δ Γ t_0 t_1)]
[(convert Δ (Γ x : t_0) t_1 t_2)
----------------- "≼-Π"
(convert Δ Γ (Π (x : t_0) t_1) (Π (x : t_0) t_2))])
(define-metafunction tt-typingL
Γ-union : Γ Γ -> Γ
[(Γ-union Γ ) Γ]
@ -697,6 +708,6 @@
#:contract (type-check Δ Γ e t)
[(type-infer Δ Γ e t_0)
(equivalent Δ t t_0)
(convert Δ Γ t t_0)
----------------- "DTR-Check"
(type-check Δ Γ e t)])

View File

@ -236,7 +236,7 @@
;; Are these two terms equivalent in type-systems internal equational reasoning?
(define (cur-equal? e1 e2)
(and (judgment-holds (equivalent ,(delta) ,(eval-cur e1) ,(eval-cur e2))) #t))
(and (judgment-holds (convert ,(delta) ,(gamma) ,(eval-cur e1) ,(eval-cur e2))) #t))
;; TODO: Document local-env
(define (cur-type-infer syn #:local-env [env '()])

View File

@ -244,7 +244,7 @@
zero)))))
(define-syntax-rule (check-equivalent e1 e2)
(check-holds (equivalent e1 e2)))
(check-holds (convert e1 e2)))
(check-equivalent
(λ (x : Type) x) (λ (y : Type) y))
(check-equivalent
@ -507,7 +507,7 @@
((and B) A))))
(in-hole Ξ (Π (x : (in-hole Θ and)) U))))
(check-holds
(equivalent ,Δ4
(convert ,Δ4
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))
(Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0))))))
(check-holds