Extensive examples, syntax extensions out of core

This commit is contained in:
William J. Bowman 2014-07-25 13:53:14 +02:00
parent febe276569
commit 5d2988adf0
2 changed files with 235 additions and 51 deletions

View File

@ -1,30 +1,122 @@
#lang s-exp "redex-core.rkt"
;; Use racket libraries over your dependently typed code!?!?
;; TODO: actually, I'm not sure this should work quite as well as it
;; seems to with check-equal?
(require rackunit)
;; Look, syntax extension!
(define-syntax (-> syn)
(syntax-case syn ()
[(_ t1 t2)
(with-syntax ([(x) (generate-temporaries '(1))])
#'(forall (x : t1) t2))]))
(data true : Type
(TT : true))
(data nat : Type
(z : nat)
(s : (-> nat nat)))
(lambda (nat : Type)
((lambda (x : (forall (y : Type) Type)) (x nat))
(lambda (y : Type) y)))
(define nat-is-now-a-type
(lambda (y : (-> nat nat))
(lambda (x : nat) (y x))))
(lambda (nat : Type) nat)
;; Lexical scoping! I can reuse the name nat!
(define nat-is-just-a-name (lambda (nat : Type) nat))
(lambda (y : (-> nat nat))
(lambda (x : nat) (y x)))
(data true : Type (T : true))
(data false : Type)
;; Real meta-programming! Syntax is just data.
(define-syntax (inhabit-type syn)
(syntax-case syn (true false nat)
[(_ true) #'T]
[(_ nat) #'z]
[(_ false)
(raise-syntax-error 'inhabit
"Actually, this type is unhabited" syn)]
[(_ t)
(raise-syntax-error 'inhabit
"Sorry, this type is too much for me" syn)]))
(define hmm (inhabit-type true))
(check-equal? hmm T)
#;(define is-this-inhabited (inhabit-type false))
;; Reuse some familiar syntax
(define y (lambda (x : true) x))
(define (y1 (x : true)) x)
y1
(define (y2 (x1 : true) (x2 : true)) x1)
(y2 TT TT)
(check-equal? (y2 T T) T)
;; Write functions on inductive data
(define (plus (n1 : nat) (n2 : nat))
(case n1
[z n2]
;; TODO: Add macro to enable writing this line as:
;; [(s x) (s (s x))]
[s (λ (x : nat) (s (s x)))]))
(define four (plus (s (s z)) (s (s z))))
(check-equal? four (s (s (s z))))
;; It's annoying to have to write things explicitly curried
;; Macros to the rescue
(define-syntax forall*
(syntax-rules (:)
[(_ (a : t) (ar : tr) ... b)
(forall (a : t)
(forall* (ar : tr) ... b))]
[(_ b) b]))
(define-syntax lambda*
(syntax-rules (:)
[(_ (a : t) (ar : tr) ... b)
(lambda (a : t)
(lambda* (ar : tr) ... b))]
[(_ b) b]))
(data and : (forall* (A : Type) (B : Type) Type)
(conj : (forall* (A : Type) (B : Type)
(x : A) (y : B) (and A B))))
;; Prove interesting theorems!
#|
;; TODO: Well, case can't seem to type-check non-Type inductives. So I
;; guess we'll do a church encoding
(define (thm:and-is-symmetric
(x : (forall* (P : Type) (Q : Type)
;; TODO: Can't use -> for the final clause because generated
;; name has to match name in proof.
(ab : (and P Q))
(and P Q))))
T)
(define proof:and-is-symmetric
(lambda* (P : Type) (Q : Type) (ab : (and P Q))
(case ab
(conj (lambda* (S : Type) (R : Type) (s : S) (r : R) (conj R S r s))))))
(check-equal? (thm:and-is-symmetric proof:and-is-symmetric) T)
|#
(define and^ (forall* (A : Type) (B : Type)
(forall* (C : Type) (f : (forall* (a : A) (b : B) C))
C)))
(define fst (lambda* (A : Type) (B : Type) (ab : (and^ A B)) (ab A (lambda* (a : A) (b : B) a))))
(define snd (lambda* (A : Type) (B : Type) (ab : (and^ A B)) (ab B (lambda* (a : A) (b : B) b))))
(define conj^ (lambda* (A : Type) (B : Type)
(a : A) (b : B)
(lambda* (C : Type) (f : (-> A (-> B C)))
(f a b))))
(define (thm:and^-is-symmetric
(x : (forall* (P : Type) (Q : Type)
(ab : (and^ P Q))
(and^ P Q))))
T)
(define proof:and^-is-symmetric
(lambda* (P : Type) (Q : Type) (ab : (and^ P Q))
(conj^ Q P (snd P Q ab) (fst P Q ab))))
(check-equal? T (thm:and^-is-symmetric proof:and^-is-symmetric))

View File

@ -1,5 +1,6 @@
#lang racket
;; This module contains a model of CIC, ish.
;; TODO: Strip to racket/base as much as possible
(module core racket
(require
@ -25,20 +26,27 @@
(module+ test
(require rackunit)
(check-true (redex-match? cicL x (term T)))
(check-true (redex-match? cicL x (term truth)))
(check-true (redex-match? cicL x (term zero)))
(check-true (redex-match? cicL x (term s)))
(check-true (redex-match? cicL t (term zero)))
(check-true (redex-match? cicL t (term s)))
(check-true (redex-match? cicL t (term Type)))
(check-true (redex-match? cicL x (term nat)))
(check-true (redex-match? cicL t (term nat)))
(check-true (redex-match? cicL U (term Type)))
(check-true (redex-match? cicL U (term (Unv 0))))
(check-true (redex-match? cicL e (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (redex-match? cicL v (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (redex-match? cicL t (term (λ (x_0 : (Unv 0)) x_0)))))
(define x? (redex-match? cicL x))
(define t? (redex-match? cicL t))
(define e? (redex-match? cicL e))
(define v? (redex-match? cicL v))
(define U? (redex-match? cicL U))
(check-true (x? (term T)))
(check-true (x? (term truth)))
(check-true (x? (term zero)))
(check-true (x? (term s)))
(check-true (t? (term zero)))
(check-true (t? (term s)))
(check-true (t? (term Type)))
(check-true (x? (term nat)))
(check-true (t? (term nat)))
(check-true (U? (term Type)))
(check-true (U? (term (Unv 0))))
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
)
;; 'A'
;; Types of Universes
@ -73,22 +81,55 @@
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
;; NB: Substitution is hard
(define-metafunction cicL
subst-vars : (x any) ... any -> any
[(subst-vars (x_1 any_1) x_1) any_1]
[(subst-vars (x_1 any_1) (any_2 ...)) ((subst-vars (x_1 any_1) any_2) ...)]
[(subst-vars (x_1 any_1) any_2) any_2]
[(subst-vars (x_1 any_1) (x_2 any_2) ... any_3) (subst-vars (x_1 any_1) (subst-vars (x_2 any_2) ... any_3))]
[(subst-vars any) any])
(define-metafunction cicL
subst : t x t -> t
[(subst U x t) U]
[(subst x x t) t]
[(subst x_0 x t) x_0]
[(subst (Π (x : t_0) t_1) x t) (Π (x : t_0) t_1)]
[(subst (λ (x : t_0) t_1) x t) (λ (x : t_0) t_1)]
[(subst (Π (x_0 : t_0) t_1) x t) (Π (x_0 : t_0) (subst t_1 x t))]
[(subst (λ (x_0 : t_0) t_1) x t) (λ (x_0 : t_0) (subst t_1 x t))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))])
[(subst (Π (x : t_0) t_1) x t) (Π (x : (subst t_0 x t)) t_1)]
[(subst (λ (x : t_0) t_1) x t) (λ (x : (subst t_0 x t)) t_1)]
;; TODO: Broken: needs capture avoiding, but currently require
;; binders to be the same in term/type, so this is not a local
;; change.
[(subst (Π (x_0 : t_0) t_1) x t) (Π (x_0 : (subst t_0 x t)) (subst t_1 x t)) ]
[(subst (λ (x_0 : t_0) t_1) x t) (λ (x_0 : (subst t_0 x t)) (subst t_1 x t))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
[(subst (case e (x_0 e_0) ...) x t)
(case (subst e x t)
(x_0 (subst e_0 x t)) ...)])
(module+ test
(check-equal?
(term (Π (a : S) (Π (b : B) ((and S) B))))
(term (subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
;; NB:
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
(define-extended-language cic-redL cicL
(E hole (E t) (λ (x : t) E) (Π (x : t) E)))
(define-metafunction cicL
inductive-name : t -> x
[(inductive-name x) x]
[(inductive-name (t_1 t_2)) (inductive-name t_1)])
(module+ test
(check-equal?
(term and)
(term (inductive-name ((and A) B)))))
(define-metafunction cicL
inductive-apply : t t -> t
[(inductive-apply e x) e]
[(inductive-apply e (e_1 e_2))
((inductive-apply e e_1) e_2)])
;; TODO: Congruence-closure instead of β
(define ==β
(reduction-relation cic-redL
@ -96,6 +137,10 @@
(subst t_1 x t_2))
(==> ((λ (x : t) e_0) e_1)
(subst e_0 x e_1))
(==> (case e_9
(x_0 e_0) ... (x e) (x_r e_r) ...)
(inductive-apply e e_9)
(where x (inductive-name e_9)))
with
[(--> (in-hole E t_0) (in-hole E t_1))
(==> t_0 t_1)]))
@ -183,11 +228,22 @@
branch-type : t t t -> t
[(branch-type t_ind (Π (x_0 : t) e_0) (Π (x_1 : t) e_1))
(branch-type t_ind e_0 e_1)]
[(branch-type t_ind t_ind t) t])
;[(branch-type t_ind t_ind t) t])
[(branch-type t_ind t_other t) t])
(module+ test
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ zero) Type)))
(check-equal? (term nat) (term (branch-type nat nat nat)))
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ s) (Π (x : nat) Type)))))
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ s) (Π (x : nat) Type))))
(define Σ3 (term ( and : (Π (A : Type) (Π (B : Type) Type)))))
(define Σ4 (term (,Σ3 conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) ((and A) B))))))))
(define Σ? (redex-match? cic-typingL Σ))
(check-true (Σ? Σ3))
(check-true (Σ? Σ4))
(check-equal?
(term Type)
(term (branch-type and (lookup ,Σ4 conj)
(Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) Type))))))))
(define-metafunction cic-typingL
branch-types-match : Σ (x ...) (t ...) t t -> #t or #f
@ -201,18 +257,19 @@
(check-true
(term (branch-types-match ,Σ (zero s) (nat (Π (x : nat) nat)) nat nat))))
;; TODO: I'm pretty sure this is wrong
(define-metafunction cicL
positive : t any -> #t or #f
;; Type; not a inductive constructor
[(positive U any) #t]
[(positive t any) #t]
;; nat
[(positive x_0 x_0) #t]
;; nat -> t_1 ... -> nat
[(positive (Π (x : x_1) t_1) x_0)
(positive t_1 x_0)]
;; Type -> t_1 ... -> nat
[(positive (Π (x : U) t_1) x_0)
(positive t_1 x_0)]
[(positive (Π (x : U) t_1) any)
(positive t_1 any)]
;; (t_0 -> t_2) -> t_1 ... -> nat
[(positive (Π (x : (Π (x_1 : t_0) t_2)) t_1) x_0)
,(and (term (copositive (Π (x_1 : t_0) t_2) x_0)) (term (positive t_1 x_0)))])
@ -232,6 +289,7 @@
(module+ test
(check-true (term (positive nat nat)))
(check-true (term (positive (Π (x : Type) (Π (y : Type) Type)) #f)))
(check-true (term (positive (Π (x : nat) nat) nat)))
;; (nat -> nat) -> nat
(check-false (term (positive (Π (x : (Π (y : nat) nat)) nat) nat)))
@ -289,17 +347,19 @@
----------------- "DTR-Product"
(types Σ Γ (Π (x : t_0) t) U)]
[(types Σ Γ e_0 (Π (x : t_0) t_1))
[(types Σ Γ e_0 (Π (x_0 : t_0) t_1))
(types Σ Γ e_1 t_0)
----------------- "DTR-Application"
(types Σ Γ (e_0 e_1) (subst t_1 x e_1))]
(types Σ Γ (e_0 e_1) (subst t_1 x_0 e_1))]
;; TODO: This restriction that the names be the same is a little annoying
[(types Σ (Γ x : t_0) e t_1)
(types Σ Γ (Π (x : t_0) t_1) U)
----------------- "DTR-Abstraction"
(types Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(types Σ Γ e t_1)
[(types Σ Γ e t_9)
(where t_1 (inductive-name t_9))
(side-condition (constructors-for Σ t_1 (x_0 x_1 ...)))
(types Σ Γ e_0 t_00)
(types Σ Γ e_1 t_11) ...
@ -376,25 +436,53 @@
(define Σ0 (term ))
(define lam (term (λ (nat : Type) nat)))
(check-equal?
(term (Π (nat : Type) Type))
(list (term (Π (nat : Type) Type)))
(judgment-holds (types ,Σ0 ,lam t) t))
(define Σ2 (term ((( nat : Type) z : nat) s : (Π (x : nat) nat))))
(check-equal?
(term (Π (nat : Type) Type))
(list (term (Π (nat : Type) Type)))
(judgment-holds (types ,Σ2 ,lam t) t))
(check-equal?
(term (Π (x : (Π (y : Type) y)) nat))
(list (term (Π (x : (Π (y : Type) y)) nat)))
(judgment-holds (types ( nat : Type) (λ (x : (Π (y : Type) y)) (x nat))
t) t))
(check-equal?
(term (Π (y : Type) Type))
(list (term (Π (y : Type) Type)))
(judgment-holds (types ( nat : Type) (λ (y : Type) y) t) t))
(check-equal?
(term Type)
(list (term Type))
(judgment-holds (types ( nat : Type)
((λ (x : (Π (y : Type) Type)) (x nat))
(λ (y : Type) y))
t) t)))
t) t))
(check-equal?
(list (term Type))
(judgment-holds
(types ,Σ4 (Π (S : Type) (Π (B : Type) (Π (a : S) (Π (b : B) ((and S) B)))))
U) U))
(check-true
(judgment-holds (types ,Σ4 ( S : Type) conj (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) ((and A) B))))))))
(check-true
(judgment-holds (types ,Σ4 ( S : Type) S Type)))
(check-true
(judgment-holds (types ,Σ4 ( S : Type) (conj S)
(Π (B : Type) (Π (a : S) (Π (b : B) ((and S) B)))))))
(check-true
(judgment-holds (types ,Σ4 ( S : Type) (conj S)
(Π (B : Type) (Π (a : S) (Π (b : B) ((and S) B)))))))
(check-true
(judgment-holds (types ,Σ4 (λ (S : Type) (conj S))
(Π (S : Type) (Π (B : Type) (Π (a : S) (Π (b : B) ((and S) B))))))))
(check-true
(judgment-holds (types ((,Σ4 true : Type) tt : true)
(case ((((conj true) true) tt) tt)
(conj (λ (A : Type)
(λ (B : Type)
(λ (a : A)
(λ (b : B) a))))))
t) t))
)
(define-judgment-form cic-typingL
#:mode (type-check I I I)
@ -441,6 +529,8 @@
----------------- "DTR-SAnnotate"
(synth Γ (e : t) t)]) )
;; This module just provide module language sugar over the redex model.
;; TODO: Strip to racket/base as much as possible.
;; TODO: Remove trace,pretty, debugging stuff
(module sugar racket
@ -458,6 +548,8 @@
(provide
;; Basic syntax
#%module-begin
require
for-syntax
(rename-out
[dep-lambda lambda]
[dep-lambda λ]
@ -506,11 +598,6 @@
(unless (redex-match? cic-typingL Σ x)
(error 'core-error "We build a bad sigma ~s" x))
x)))
#;(define-syntax (-> syn)
(syntax-case syn ()
[(_ t1 t2)
(with-syntax ([(x) (generate-temporaries '(1))])
#'(dep-forall (x : t1) t2))]))
(define-syntax (dep-lambda syn)
(syntax-case syn (:)
@ -535,7 +622,7 @@
#'(term (reduce ,(curry-app e1 e2 ...))) ]))
(define-syntax-rule (dep-case e (x0 e0) ...)
(term (case ,e (,x0 ,e0) ...)))
(term (reduce (case ,e (,x0 ,e0) ...))))
(define-syntax (dep-inductive syn)
(syntax-case syn (:)
@ -558,6 +645,9 @@
(error 'type-checking "Term is ill-typed: ~s" tmp))
tmp)]))
;; TODO: Right now, all top level things are variables, so typos can
;; result in "unbound variable" errors. Should do something more
;; clever.
(define-syntax (dep-var syn)
(syntax-case syn ()
[(_ . id)
@ -581,3 +671,5 @@
(require 'sugar)
(provide (all-from-out 'sugar))
(module+ test
(require (submod ".." core test)))