diff --git a/examples/try.rkt b/examples/try.rkt new file mode 100644 index 0000000..34b563d --- /dev/null +++ b/examples/try.rkt @@ -0,0 +1,35 @@ +#lang cur + +(require + cur/stdlib/sugar + cur/stdlib/nat + cur/stdlib/prop) + + +;; TODO: Axioms +;; TODO: implicits +;; No way to define axioms in Cur, yet, although it is a simple change. +;; No implicits in Cur, yet +(define (plus_0_n (f_equal : (-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B)) + (== A a1 a2) + (== B (f a1) (f a2)))) (n : Nat)) + (match n + ;; TODO: This should work + #:return (== Nat n (plus z n)) + [z (refl Nat z)] + [(s (n : Nat)) + (f_equal Nat n (plus z n) Nat s (recur n))])) +(:: plus_n_0 + (forall + (f_equal : (-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B)) + (== A a1 a2) (== B (f a1) (f a2)))) + (n : Nat) + (== Nat n (plus z n)))) + +#;(define (plus_n_Sm (n : Nat) (m : Nat)) + (elim Nat Type + (lambda (n : Nat) (== Nat (plus n m) (plus m n))) + (plus_n_0 m) + (lambda (y : Nat) (ih : )) + (elim == Type))) +#;(:: plus_n_Sm (forall (n : Nat) (m : Nat) (== (s (plus n m)) (plus n (s m))))) diff --git a/examples/try.v b/examples/try.v new file mode 100644 index 0000000..a2915d7 --- /dev/null +++ b/examples/try.v @@ -0,0 +1,57 @@ +Definition plus_n_O : forall n : nat, n = n + 0 := +fun n : nat => +nat_ind (fun n0 : nat => n0 = n0 + 0) eq_refl + (fun (n0 : nat) (IHn : n0 = n0 + 0) => f_equal S IHn) n. + +Definition plus_n_Sm : forall n m : nat, S (n + m) = n + S m := +fun n m : nat => +nat_ind (fun n0 : nat => S (n0 + m) = n0 + S m) eq_refl + (fun (n0 : nat) (IHn : S (n0 + m) = n0 + S m) => f_equal S IHn) n. + +Definition plus_comm : forall n m : nat, n + m = m + n := +fun n m : nat => +nat_ind (fun n0 : nat => n0 + m = m + n0) (plus_n_O m) + (fun (y : nat) (H : y + m = m + y) => + eq_ind (S (m + y)) (fun n0 : nat => S (y + m) = n0) + (f_equal S H) (m + S y) (plus_n_Sm m y)) n. + +Fixpoint ft (l: nat): Type := + match l with + | O => unit + | S n => (bool * ft n) % type + end. + +Fixpoint concat {n1 n2} : ft n1 -> ft n2 -> ft (n1 + n2) := + match n1 as n1_PAT return ft n1_PAT -> ft n2 -> ft (n1_PAT + n2) with + | O => fun _ l2 => l2 + | S n => fun l1 => + match l1 with + | (b, l1') => fun l2 => (b, concat l1' l2) + end + end. + +(* Question 1: Ideally, I could have the following syntactic sugar, can you do that? + +Fixpoint concat {n1 n2} (l1: ft n1) (l2: ft n2) : ft (n1 + n2) := + match n1 with + | O => l2 + | S n => + match l1 with + | (b, l1') => (b, concat l1' l2) + end + end. + +*) + +Definition concat' {n1 n2} (l1: ft n1) (l2: ft n2): ft (n1 + n2) := + eq_rect_r ft (concat l2 l1) (plus_comm _ _). + +Goal (@concat' 1 1 (true, tt) (false, tt)) = (false, (true, tt)). +Proof. + unfold concat'. + simpl (@concat 1 1 (false, tt) (true, tt)). + cbv delta [plus_comm plus_n_Sm plus_n_O nat_ind eq_ind]. + simpl. + (* Question 2: In this step, Coq does a large number of computation to compute a proof term to eq_refl. This is super inefficient for any function application of eq_rect_r. Is there a possible way to customize the method of reducing a term in your system? For example, when you see a eq_rect_r, directly computes two types (which should be equivalent) and check if they are convertible. If yes, tag new type on the term directly. *) + reflexivity. +Qed.