Improving readability of core, at performance cost

* Using better meta-variable names when possible
* Adding pre-conditions to metafunctions to separate logic from
  failure
* Removed clause order dependency as much as possible
* Performance cost of 10%. Since the Redex core is quite slow anyway,
  and readability/auditability of this core is paramount, accepting
  cost.
This commit is contained in:
William J. Bowman 2016-03-24 19:50:52 -04:00
parent 7cd18766a2
commit 64b18334ae
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A
4 changed files with 175 additions and 117 deletions

View File

@ -63,3 +63,4 @@
[(Γ-remove (Γ x : t) x) Γ]
[(Γ-remove (Γ x_0 : t_0) x_1) (Γ-remove Γ x_1)])

View File

@ -70,49 +70,86 @@
;;; ------------------------------------------------------------------------
;;; Primitive Operations on signatures Δ (those operations that do not require contexts)
;; TODO: Define generic traversals of Δ and Γ ?
(define-metafunction ttL
Δ-in-dom : Δ D -> #t or #f
[(Δ-in-dom D)
#f]
[(Δ-in-dom (Δ (D : t any)) D)
#t]
[(Δ-in-dom (Δ (D_!_0 : any_D any)) (name D D_!_0))
(Δ-in-dom Δ D)])
(define-metafunction ttL
Δ-in-constructor-dom : Δ c -> #t or #f
[(Δ-in-constructor-dom c)
#f]
[(Δ-in-constructor-dom (Δ (D : any_D ((c_!_0 : any) ... (c_i : any_i) any_r ...))) (name c_i c_!_0))
#t]
[(Δ-in-constructor-dom (Δ (D : any_D ((c_!_0 : any) ...))) (name c c_!_0))
(Δ-in-constructor-dom Δ c)])
;;; TODO: Might be worth maintaining the above bijection between Δ and maps for performance reasons
;; TODO: This is doing too many things
;; NB: Depends on clause order
(define-metafunction ttL
Δ-ref-type : Δ x -> t or #f
[(Δ-ref-type x) #f]
[(Δ-ref-type (Δ (x : t any)) x) t]
[(Δ-ref-type (Δ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t]
[(Δ-ref-type (Δ (x_0 : t_0 any)) x) (Δ-ref-type Δ x)])
Δ-ref-type : Δ_0 D_0 -> t
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-ref-type (Δ (D : t any)) D)
t]
[(Δ-ref-type (Δ (D_!_0 : t any)) (name D D_!_0))
(Δ-ref-type Δ D)])
;; TODO: Should not use Δ-ref-type
;; Returns the inductively defined type that x constructs
(define-metafunction ttL
Δ-ref-constructor-type : Δ x x -> t
[(Δ-ref-constructor-type Δ x_D x_ci)
(Δ-ref-type Δ x_ci)])
Δ-key-by-constructor : Δ_0 c_0 -> D
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-key-by-constructor (Δ (D : any_D ((c_!_0 : any_c) ... (c : any_ci) any_r ...))) (name c c_!_0))
D]
[(Δ-key-by-constructor (Δ (D : any_D ((c_!_0 : any_c) ...))) (name c c_!_0))
(Δ-key-by-constructor Δ c)])
;; Get the list of constructors for the inducitvely defined type x_D
;; NB: Depends on clause order
;; Returns the constructor map for the inductively defined type D in the signature Δ
(define-metafunction ttL
Δ-ref-constructors : Δ x -> (x ...) or #f
[(Δ-ref-constructors x_D) #f]
[(Δ-ref-constructors (Δ (x_D : t_D ((x : t) ...))) x_D)
(x ...)]
[(Δ-ref-constructors (Δ (x_1 : t_1 any)) x_D)
(Δ-ref-constructors Δ x_D)])
Δ-ref-constructor-map : Δ_0 D_0 -> ((c : t) ...)
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-ref-constructor-map (Δ (D : any_D any)) D)
any]
[(Δ-ref-constructor-map (Δ (D_!_0 : any_D any)) (name D D_!_0))
(Δ-ref-constructor-map Δ D)])
;; Return the type of the constructor c_i
(define-metafunction ttL
Δ-ref-constructor-type : Δ_0 c_0 -> t
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-ref-constructor-type Δ c)
t
(where D (Δ-key-by-constructor Δ c))
(where (any_1 ... (c : t) any_0 ...)
(Δ-ref-constructor-map Δ D))])
(define-metafunction ttL
Δ-ref-constructors : Δ_0 D_0 -> (c ...)
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-ref-constructors Δ D)
(c ...)
(where ((c : any) ...) (Δ-ref-constructor-map Δ D))])
;; TODO: Mix of pure Redex/escaping to Racket sometimes is getting confusing.
;; TODO: Justify, or stop.
;; NB: Depends on clause order
(define-metafunction ttL
sequence-index-of : any (any ...) -> natural
[(sequence-index-of any_0 (any_0 any ...))
0]
[(sequence-index-of any_0 (any_1 any ...))
[(sequence-index-of (name any_0 any_!_0) (any_!_0 any ...))
,(add1 (term (sequence-index-of any_0 (any ...))))])
;; Get the index of the constructor x_ci in the list of constructors for x_D
;; Get the index of the constructor c_i
(define-metafunction ttL
Δ-constructor-index : Δ x x -> natural
[(Δ-constructor-index Δ x_D x_ci)
(sequence-index-of x_ci (Δ-ref-constructors Δ x_D))])
Δ-constructor-index : Δ_0 c_0 -> natural
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-index Δ c)
(sequence-index-of c (Δ-ref-constructors Δ D))
(where D (Δ-key-by-constructor Δ c))])
;;; ------------------------------------------------------------------------
;;; Operations that involve contexts.
@ -129,11 +166,6 @@
;; Applies the term t to the telescope Ξ.
;; TODO: Test
#| TODO:
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
| that (convert t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is convert to (Ξ-apply Ξ t)? Yes.
|#
(define-metafunction tt-ctxtL
Ξ-apply : Ξ t -> t
[(Ξ-apply hole t) t]
@ -153,102 +185,110 @@
;;; ------------------------------------------------------------------------
;;; Computing the types of eliminators
;; Return the indices of x_D as a telescope Ξ
;; TODO: Define generic traversals of Δ and Γ ?
;; Return the indices of D as a telescope Ξ
(define-metafunction tt-ctxtL
Δ-ref-index-Ξ : Δ x -> Ξ or #f
[(Δ-ref-index-Ξ (Δ (x_D : (in-hole Ξ U) any)) x_D)
Ξ]
[(Δ-ref-index-Ξ (Δ (x_1 : t_1 any)) x_D)
(Δ-ref-index-Ξ Δ x_D)]
[(Δ-ref-index-Ξ Δ x)
#f])
;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-telescope : Δ x x -> Ξ
[(Δ-constructor-telescope Δ x_D x_ci)
Δ-ref-index-Ξ : Δ_0 D_0 -> Ξ
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-ref-index-Ξ any_Δ any_D)
Ξ
(where (in-hole Ξ (in-hole Θ x_D))
(Δ-ref-constructor-type Δ x_D x_ci))])
(where (in-hole Ξ U) (Δ-ref-type any_Δ any_D))])
;; Returns the index arguments as an apply context of the constructor x_ci of the inductively
;; defined type x_D
;; Returns the telescope of the arguments for the constructor c_i of the inductively defined type D
(define-metafunction tt-ctxtL
Δ-constructor-indices : Δ x x -> Θ
[(Δ-constructor-indices Δ x_D x_ci)
Δ-constructor-telescope : Δ_0 c_0 -> Ξ
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-telescope Δ c)
Ξ
(where D (Δ-key-by-constructor Δ c))
(where (in-hole Ξ (in-hole Θ D))
(Δ-ref-constructor-type Δ c))])
;; Returns the index arguments as an apply context of the constructor c_i of the inductively
;; defined type D
(define-metafunction tt-ctxtL
Δ-constructor-indices : Δ_0 c_0 -> Θ
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-indices Δ c)
Θ
(where (in-hole Ξ (in-hole Θ x_D))
(Δ-ref-constructor-type Δ x_D x_ci))])
(where D (Δ-key-by-constructor Δ c))
(where (in-hole Ξ (in-hole Θ D))
(Δ-ref-constructor-type Δ c))])
;; Inner loop for Δ-constructor-inductive-telescope
;; NB: Depends on clause order
(define-metafunction tt-ctxtL
inductive-loop : x Φ -> Φ
[(inductive-loop x_D hole) hole]
[(inductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-loop x_D Φ_1))]
[(inductive-loop x_D (Π (x : t) Φ_1))
(inductive-loop x_D Φ_1)])
inductive-loop : D Φ -> Φ
[(inductive-loop D hole) hole]
[(inductive-loop D (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1))
(Π (x : (in-hole Φ (in-hole Θ D))) (inductive-loop D Φ_1))]
[(inductive-loop D (Π (x : t) Φ_1))
(inductive-loop D Φ_1)])
;; Returns the inductive arguments to the constructor x_ci of the inducitvely defined type x_D
;; Returns the inductive arguments to the constructor c_i
(define-metafunction tt-ctxtL
Δ-constructor-inductive-telescope : Δ x x -> Ξ
[(Δ-constructor-inductive-telescope Δ x_D x_ci)
(inductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))])
Δ-constructor-inductive-telescope : Δ_0 c_0 -> Ξ
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-inductive-telescope Δ c)
(inductive-loop D (Δ-constructor-telescope Δ c))
(where D (Δ-key-by-constructor Δ c))])
;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with
;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D
;; Returns the inductive hypotheses required for eliminating the inductively defined type D with
;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for D
(define-metafunction tt-ctxtL
hypotheses-loop : x t Φ -> Φ
[(hypotheses-loop x_D t_P hole) hole]
[(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)))
;; TODO: Instead of this nonsense, it might be simpler to pass in the type of t_P and use that
;; as/to compute the type of the hypothesis.
hypotheses-loop : D t Φ -> Φ
[(hypotheses-loop D t_P hole) hole]
[(hypotheses-loop D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ D))) Φ_1)))
(Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x))))
(hypotheses-loop x_D t_P Φ_1))
(where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))])
(hypotheses-loop D t_P Φ_1))
(where x_h ,(variable-not-in (term (D t_P any_0)) 'x-ih))])
;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result
;; Computes the type of the eliminator for the inductively defined type D with a motive whose result
;; is in universe U.
;;
;; The type of (elim x_D U) is something like:
;; The type of (elim D U) is something like:
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
;; (method_ci ...) -> ... ->
;; (a -> ... -> (D a ...) ->
;; (P a ... (D a ...))))
;;
;; x_D is an inductively defined type
;; D is an inductively defined type
;; U is the sort the motive
;; x_P is the name of the motive
;; Ξ_P*D is the telescope of the indices of x_D and
;; the witness of type x_D (applied to the indices)
;; Ξ_m is the telescope of the methods for x_D
;; Ξ_P*D is the telescope of the indices of D and
;; the witness of type D (applied to the indices)
;; Ξ_m is the telescope of the methods for D
;; Returns the inductive hypotheses required for the elimination method of constructor c_i for
;; inductive type D, when eliminating with motive t_P.
(define-metafunction tt-ctxtL
Δ-constructor-inductive-hypotheses : Δ D c t -> Ξ
[(Δ-constructor-inductive-hypotheses Δ D c_i t_P)
(hypotheses-loop D t_P (Δ-constructor-inductive-telescope Δ D c_i))])
Δ-constructor-inductive-hypotheses : Δ_0 c_0 t -> Ξ
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-inductive-hypotheses Δ c_i t_P)
(hypotheses-loop D t_P (Δ-constructor-inductive-telescope Δ c_i))
(where D (Δ-key-by-constructor Δ c_i))])
;; Returns the type of the method corresponding to c_i
(define-metafunction tt-ctxtL
Δ-constructor-method-type : Δ D c t -> t
[(Δ-constructor-method-type Δ D c_i t_P)
Δ-constructor-method-type : Δ_0 c_0 t -> t
#:pre (Δ-in-constructor-dom Δ_0 c_0)
[(Δ-constructor-method-type Δ c_i t_P)
(in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a c_i))))
(where Θ_p (Δ-constructor-indices Δ D c_i))
(where Ξ_a (Δ-constructor-telescope Δ D c_i))
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ D c_i t_P))])
(where Θ_p (Δ-constructor-indices Δ c_i))
(where Ξ_a (Δ-constructor-telescope Δ c_i))
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ c_i t_P))])
;; Return the types of the methods required to eliminate D with motive e
(define-metafunction tt-ctxtL
Δ-method-types : Δ D e -> (t ...)
Δ-method-types : Δ_0 D_0 e -> (t ...)
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-method-types Δ D e)
,(map (lambda (c) (term (Δ-constructor-method-type Δ D ,c e))) (term (c ...)))
,(map (lambda (c) (term (Δ-constructor-method-type Δ ,c e))) (term (c ...)))
(where (c ...) (Δ-ref-constructors Δ D))])
;; Return the type of the motive to eliminate D
(define-metafunction tt-ctxtL
Δ-motive-type : Δ D U -> t
Δ-motive-type : Δ_0 D_0 U -> t
#:pre (Δ-in-dom Δ_0 D_0)
[(Δ-motive-type Δ D U)
(in-hole Ξ_P*D U)
(where Ξ (Δ-ref-index-Ξ Δ D))
@ -285,27 +325,26 @@
| U is the universe of the result of the motive
| v_P is the motive
| m_{0..n} are the methods
| p ... are the indices of x_D
| c_i is a constructor of x_d
| p ... are the indices of D
| c_i is a constructor of D
| a ... are the arguments to c_i
|
| Using contexts, this appears as (in-hole Θ ((elim D U) v_P))
|#
(define-metafunction tt-ctxtL
is-inductive-argument : Δ D t -> #t or #f
is-inductive-argument : Δ_0 D_0 t -> #t or #f
#:pre (Δ-in-dom Δ_0 D_0)
;; Think this only works in call-by-value. A better solution would
;; be to check position of the argument w.r.t. the current
;; method. requires more arguments, and more though.q
[(is-inductive-argument Δ D (in-hole Θ c_i))
,(and (memq (term c_i) (term (Δ-ref-constructors Δ D))) #t)])
;; Generate recursive applications of the eliminator for each inductive argument of type x_D.
;; In more detail, given motive t_P, indices Θ_p, methods Θ_m, and arguments Θ_i to constructor
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
;; Generate recursive applications of the eliminator for each inductive argument in Θ.
;; TODO TTEESSSSSTTTTTTTT
(define-metafunction tt-redL
Δ-inductive-elim : Δ D C-elim Θ -> Θ
Δ-inductive-elim : Δ_0 D_0 C-elim Θ -> Θ
#:pre (Δ-in-dom Δ_0 D_0)
;; NB: If metafunction fails, recursive
;; NB: elimination will be wrong. This will introduced extremely sublte bugs,
;; NB: inconsistency, failure of type safety, and other bad things.
@ -327,7 +366,7 @@
(--> (Δ (in-hole E (elim D e_motive (e_i ...) (v_m ...) (in-hole Θv_c c))))
(Δ (in-hole E (in-hole Θ_mi v_mi)))
;; Find the method for constructor c_i, relying on the order of the arguments.
(where natural (Δ-constructor-index Δ D c))
(where natural (Δ-constructor-index Δ c))
(where v_mi ,(list-ref (term (v_m ...)) (term natural)))
;; Generate the inductive recursion
(where Θ_ih (Δ-inductive-elim Δ D (elim D e_motive (e_i ...) (v_m ...) hole) Θv_c))
@ -365,12 +404,22 @@
----------------- "≼-Π"
(convert Δ Γ (Π (x : t_0) t_1) (Π (x : t_0) t_2))])
;; NB: Depends on clause order
(define-metafunction tt-typingL
Γ-ref : Γ x -> t or #f
[(Γ-ref x) #f]
[(Γ-ref (Γ x : t) x) t]
[(Γ-ref (Γ x_0 : t_0) x_1) (Γ-ref Γ x_1)])
Γ-in-dom : Γ x -> #t or #f
[(Γ-in-dom x)
#f]
[(Γ-in-dom (Γ x : t) x)
#t]
[(Γ-in-dom (Γ x_!_0 : t) (name x x_!_0))
(Γ-in-dom Γ x)])
(define-metafunction tt-typingL
Γ-ref : Γ_0 x_0 -> t
#:pre (Γ-in-dom Γ_0 x_0)
[(Γ-ref (Γ x : t) x)
t]
[(Γ-ref (Γ x_!_0 : t_0) (name x_1 x_!_0))
(Γ-ref Γ x_1)])
(define-metafunction tt-typingL
nonpositive : x t -> #t or #f
@ -394,12 +443,12 @@
(define-metafunction tt-typingL
positive* : x (t ...) -> #t or #f
[(positive* x_D ()) #t]
[(positive* x_D (t_c t_rest ...))
[(positive* D ()) #t]
[(positive* D (t_c t_rest ...))
;; Replace the result of the constructor with (Unv 0), to avoid the result being considered a
;; nonpositive position.
,(and (term (positive x_D (in-hole Ξ (Unv 0)))) (term (positive* x_D (t_rest ...))))
(where (in-hole Ξ (in-hole Θ x_D)) t_c)])
,(and (term (positive D (in-hole Ξ (Unv 0)))) (term (positive* D (t_rest ...))))
(where (in-hole Ξ (in-hole Θ D)) t_c)])
;; Holds when the signature Δ and typing context Γ are well-formed.
(define-judgment-form tt-typingL
@ -416,15 +465,15 @@
[(wf Δ )
(type-infer Δ t_D U_D)
(type-infer Δ ( x_D : t_D) t_c U_c) ...
(type-infer Δ ( D : t_D) t_c U_c) ...
;; NB: Ugh this should be possible with pattern matching alone ....
(side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...))))
(side-condition (positive* x_D (t_c ...)))
(side-condition ,(map (curry equal? (term D)) (term (D_0 ...))))
(side-condition (positive* D (t_c ...)))
----------------- "WF-Inductive"
(wf (Δ (x_D : t_D
(wf (Δ (D : t_D
;; Checks that a constructor for x actually produces an x, i.e., that
;; the constructor is well-formed.
((x_c : (name t_c (in-hole Ξ (in-hole Θ x_D*)))) ...))) )])
((c : (name t_c (in-hole Ξ (in-hole Θ D_0)))) ...))) )])
;; TODO: Bi-directional and inference?
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
@ -439,11 +488,18 @@
----------------- "DTR-Unv"
(type-infer Δ Γ U_0 U_1)]
[(where t (Δ-ref-type Δ x))
[(where #t (Δ-in-dom Δ x))
(where t (Δ-ref-type Δ x))
----------------- "DTR-Inductive"
(type-infer Δ Γ x t)]
[(where t (Γ-ref Γ x))
[(where #t (Δ-in-constructor-dom Δ x))
(where t (Δ-ref-constructor-type Δ x))
----------------- "DTR-Constructor"
(type-infer Δ Γ x t)]
[(where #t (Γ-in-dom Γ x))
(where t (Γ-ref Γ x))
----------------- "DTR-Start"
(type-infer Δ Γ x t)]

View File

@ -273,8 +273,9 @@
(define (cur-identifier-bound? id)
(let ([x (syntax->datum id)])
(and (x? x)
(or (term (Γ-ref ,(gamma) ,x))
(term (Δ-ref-type ,(delta) ,x))))))
(or (term (Γ-in-dom ,(gamma) ,x))
(term (Δ-in-dom ,(delta) ,x))
(term (Δ-in-constructor-dom ,(delta) ,x))))))
(define (filter-cur-exports syn modes)
(partition (compose cur-identifier-bound? export-local-id)

View File

@ -153,7 +153,7 @@
(check-not-equiv? (term (reduce (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(term (Π (x : t) (x x))))
(check-equal? (term (Δ-constructor-index ,Δ nat zero)) 0)
(check-equal? (term (Δ-constructor-index ,Δ zero)) 0)
(check-equiv? (term (reduce ,Δ (elim nat (λ (x : nat) nat)
()
((s zero)