Module language, positivity checking, more tests
* redex-core is now a module language, complete with fancyness. For documentation, TODO. * Added examples file using the module language.
This commit is contained in:
parent
176f08dd92
commit
754a32a3ea
30
example.rkt
Normal file
30
example.rkt
Normal file
|
@ -0,0 +1,30 @@
|
|||
#lang s-exp "redex-core.rkt"
|
||||
|
||||
(define-syntax (-> syn)
|
||||
(syntax-case syn ()
|
||||
[(_ t1 t2)
|
||||
(with-syntax ([(x) (generate-temporaries '(1))])
|
||||
#'(forall (x : t1) t2))]))
|
||||
|
||||
(data true : Type
|
||||
(TT : true))
|
||||
|
||||
(data nat : Type
|
||||
(z : nat)
|
||||
(s : (-> nat nat)))
|
||||
|
||||
(lambda (nat : Type)
|
||||
((lambda (x : (forall (y : Type) Type)) (x nat))
|
||||
(lambda (y : Type) y)))
|
||||
|
||||
(lambda (nat : Type) nat)
|
||||
|
||||
(lambda (y : (-> nat nat))
|
||||
(lambda (x : nat) (y x)))
|
||||
|
||||
(define y (lambda (x : true) x))
|
||||
(define (y1 (x : true)) x)
|
||||
y1
|
||||
|
||||
(define (y2 (x1 : true) (x2 : true)) x1)
|
||||
(y2 TT TT)
|
877
redex-core.rkt
877
redex-core.rkt
|
@ -1,411 +1,580 @@
|
|||
#lang racket/base
|
||||
#lang racket
|
||||
|
||||
(require
|
||||
(only-in racket/set set=?)
|
||||
(only-in racket curry)
|
||||
redex/reduction-semantics)
|
||||
(module core racket
|
||||
(require
|
||||
(only-in racket/set set=?)
|
||||
redex/reduction-semantics)
|
||||
(provide
|
||||
(all-defined-out))
|
||||
|
||||
#;(provide
|
||||
define-constructor-for
|
||||
match
|
||||
define-fun
|
||||
define-rec
|
||||
lambda)
|
||||
;; References:
|
||||
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
|
||||
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
|
||||
;; http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf
|
||||
|
||||
;; Core language. Surface langauge should provide short-hand, such as
|
||||
;; -> for non-dependent function types, and type inference.
|
||||
(define-language dtracketL
|
||||
(i ::= natural)
|
||||
(U ::= Type (Unv i))
|
||||
(x ::= variable-not-otherwise-mentioned)
|
||||
;; TODO: Having 2 binders is stupid.
|
||||
(v ::= (Π (x : t) t) (λ (x : t) t) x U)
|
||||
(t e ::= (case e (x e) (x e)...) v (t t)))
|
||||
|
||||
;; References:
|
||||
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
|
||||
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
|
||||
;; http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf
|
||||
(module+ test
|
||||
(require rackunit)
|
||||
(check-true (redex-match? dtracketL x (term T)))
|
||||
(check-true (redex-match? dtracketL x (term truth)))
|
||||
(check-true (redex-match? dtracketL x (term zero)))
|
||||
(check-true (redex-match? dtracketL x (term s)))
|
||||
(check-true (redex-match? dtracketL t (term zero)))
|
||||
(check-true (redex-match? dtracketL t (term s)))
|
||||
(check-true (redex-match? dtracketL t (term Type)))
|
||||
(check-true (redex-match? dtracketL x (term nat)))
|
||||
(check-true (redex-match? dtracketL t (term nat)))
|
||||
(check-true (redex-match? dtracketL U (term Type)))
|
||||
(check-true (redex-match? dtracketL U (term (Unv 0))))
|
||||
(check-true (redex-match? dtracketL e (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (redex-match? dtracketL v (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (redex-match? dtracketL t (term (λ (x_0 : (Unv 0)) x_0)))))
|
||||
|
||||
;; Core language. Surface langauge should provide short-hand, such as
|
||||
;; -> for non-dependent function types, and type inference.
|
||||
(define-language dtracketL
|
||||
(i ::= natural)
|
||||
(U ::= Type (Unv i))
|
||||
(x ::= variable-not-otherwise-mentioned)
|
||||
;; TODO: Having 2 binders is stupid.
|
||||
(v ::= (Π (x : t) t) (λ (x : t) t) x U)
|
||||
(t e ::= (case e (x e) (x e)...) v (t t)))
|
||||
;; 'A'
|
||||
;; Types of Universes
|
||||
;; Replace with sub-typing
|
||||
(define-judgment-form dtracketL
|
||||
#:mode (unv-ok I O)
|
||||
#:contract (unv-ok U U)
|
||||
|
||||
(module+ test
|
||||
(require rackunit)
|
||||
(check-true (redex-match? dtracketL x (term T)))
|
||||
(check-true (redex-match? dtracketL x (term truth)))
|
||||
(check-true (redex-match? dtracketL x (term zero)))
|
||||
(check-true (redex-match? dtracketL x (term s)))
|
||||
(check-true (redex-match? dtracketL t (term zero)))
|
||||
(check-true (redex-match? dtracketL t (term s)))
|
||||
(check-true (redex-match? dtracketL t (term Type)))
|
||||
(check-true (redex-match? dtracketL x (term nat)))
|
||||
(check-true (redex-match? dtracketL t (term nat)))
|
||||
(check-true (redex-match? dtracketL U (term Type)))
|
||||
(check-true (redex-match? dtracketL U (term (Unv 0))))
|
||||
(check-true (redex-match? dtracketL e (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (redex-match? dtracketL v (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (redex-match? dtracketL t (term (λ (x_0 : (Unv 0)) x_0)))))
|
||||
[-----------------
|
||||
(unv-ok Type (Unv 0))]
|
||||
|
||||
;; 'A'
|
||||
;; Types of Universes
|
||||
;; Replace with sub-typing
|
||||
(define-judgment-form dtracketL
|
||||
#:mode (unv-ok I O)
|
||||
#:contract (unv-ok U U)
|
||||
[(where i_2 ,(sub1 (term i_0)))
|
||||
(unv-ok (Unv i_2) (Unv i_3))
|
||||
(where i_1 ,(add1 (term i_3)))
|
||||
-----------------
|
||||
(unv-ok (Unv i_0) (Unv i_1))])
|
||||
|
||||
[-----------------
|
||||
(unv-ok Type (Unv 0))]
|
||||
;; 'R'
|
||||
;; Kinding, I think
|
||||
(define-judgment-form dtracketL
|
||||
#:mode (unv-kind I I O)
|
||||
#:contract (unv-kind U U U)
|
||||
|
||||
[(where i_2 ,(sub1 (term i_0)))
|
||||
(unv-ok (Unv i_2) (Unv i_3))
|
||||
(where i_1 ,(add1 (term i_3)))
|
||||
-----------------
|
||||
(unv-ok (Unv i_0) (Unv i_1))])
|
||||
[----------------
|
||||
(unv-kind Type Type Type)]
|
||||
|
||||
;; 'R'
|
||||
;; Kinding, I think
|
||||
(define-judgment-form dtracketL
|
||||
#:mode (unv-kind I I O)
|
||||
#:contract (unv-kind U U U)
|
||||
[----------------
|
||||
(unv-kind (Unv i) Type Type)]
|
||||
|
||||
[----------------
|
||||
(unv-kind Type Type Type)]
|
||||
[(where i_3 ,(max (term i_1) (term i_2)))
|
||||
----------------
|
||||
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
|
||||
|
||||
[----------------
|
||||
(unv-kind (Unv i) Type Type)]
|
||||
;; NB: Substitution is hard
|
||||
(define-metafunction dtracketL
|
||||
subst : t x t -> t
|
||||
[(subst U x t) U]
|
||||
[(subst x x t) t]
|
||||
[(subst x_0 x t) x_0]
|
||||
[(subst (Π (x : t_0) t_1) x t) (Π (x : t_0) t_1)]
|
||||
[(subst (λ (x : t_0) t_1) x t) (λ (x : t_0) t_1)]
|
||||
[(subst (Π (x_0 : t_0) t_1) x t) (Π (x_0 : t_0) (subst t_1 x t))]
|
||||
[(subst (λ (x_0 : t_0) t_1) x t) (λ (x_0 : t_0) (subst t_1 x t))]
|
||||
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))])
|
||||
;; NB:
|
||||
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
|
||||
|
||||
[(where i_3 ,(max (term i_1) (term i_2)))
|
||||
----------------
|
||||
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
|
||||
(define-extended-language dtracket-redL dtracketL
|
||||
(E hole (E t) (λ (x : t) E) (Π (x : t) E)))
|
||||
|
||||
;; NB: Substitution is hard
|
||||
(define-metafunction dtracketL
|
||||
subst : t x t -> t
|
||||
[(subst x x t) t]
|
||||
[(subst x_0 x t) x_0]
|
||||
[(subst (Π (x : t_0) t_1) x t) (Π (x : t_0) t_1)]
|
||||
[(subst (λ (x : t_0) t_1) x t) (λ (x : t_0) t_1)]
|
||||
[(subst (Π (x_0 : t_0) t_1) x t) (Π (x_0 : t_0) (subst t_1 x t))]
|
||||
[(subst (λ (x_0 : t_0) t_1) x t) (λ (x_0 : t_0) (subst t_1 x t))]
|
||||
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))])
|
||||
;; NB:
|
||||
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
|
||||
;; TODO: Congruence-closure instead of β
|
||||
(define ==β
|
||||
(reduction-relation dtracket-redL
|
||||
(==> ((Π (x : t_0) t_1) t_2)
|
||||
(subst t_1 x t_2))
|
||||
(==> ((λ (x : t) e_0) e_1)
|
||||
(subst e_0 x e_1))
|
||||
with
|
||||
[(--> (in-hole E t_0) (in-hole E t_1))
|
||||
(==> t_0 t_1)]))
|
||||
|
||||
(define-extended-language dtracket-redL dtracketL
|
||||
(E hole (E t) (λ (x : t) E) (Π (x : t) E)))
|
||||
(define-metafunction dtracket-redL
|
||||
reduce : e -> e
|
||||
[(reduce e) ,(car (apply-reduction-relation* ==β (term e)))])
|
||||
(module+ test
|
||||
(check-equal? (term (reduce Type)) (term Type))
|
||||
(check-equal? (term (reduce ((λ (x : t) x) Type))) (term Type))
|
||||
(check-equal? (term (reduce ((Π (x : t) x) Type))) (term Type))
|
||||
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) Type))))
|
||||
(term (Π (x : t) Type)))
|
||||
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) x))))
|
||||
(term (Π (x : t) x))))
|
||||
|
||||
;; TODO: Congruence-closure instead of β
|
||||
(define ==β
|
||||
(reduction-relation dtracket-redL
|
||||
(==> ((Π (x : t_0) t_1) t_2)
|
||||
(subst t_1 x t_2))
|
||||
(==> ((λ (x : t) e_0) e_1)
|
||||
(subst e_0 x e_1))
|
||||
with
|
||||
[(--> (in-hole E t_0) (in-hole E t_1))
|
||||
(==> t_0 t_1)]))
|
||||
;; TODO: Bi-directional and inference?
|
||||
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
|
||||
(define-metafunction dtracket-redL
|
||||
reduce : e -> e
|
||||
[(reduce e) ,(car (apply-reduction-relation* ==β (term e)))])
|
||||
(module+ test
|
||||
(check-equal? (term (reduce Type)) (term Type))
|
||||
(check-equal? (term (reduce ((λ (x : t) x) Type))) (term Type))
|
||||
(check-equal? (term (reduce ((Π (x : t) x) Type))) (term Type))
|
||||
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) Type))))
|
||||
(term (Π (x : t) Type)))
|
||||
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) x))))
|
||||
(term (Π (x : t) x))))
|
||||
(define-extended-language dtracket-typingL dtracketL
|
||||
(Σ Γ ::= ∅ (Γ x : t)))
|
||||
|
||||
;; TODO: Bi-directional and inference?
|
||||
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction dtracket-typingL
|
||||
lookup : Γ x -> t or #f
|
||||
[(lookup ∅ x) #f]
|
||||
[(lookup (Γ x : t) x) t]
|
||||
[(lookup (Γ x_0 : t_0) x_1) (lookup Γ x_1)])
|
||||
|
||||
(define-extended-language dtracket-typingL dtracketL
|
||||
(Σ Γ ::= ∅ (Γ x : t)))
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction dtracket-typingL
|
||||
remove : Γ x -> Γ
|
||||
[(remove ∅ x) ∅]
|
||||
[(remove (Γ x : t) x) Γ]
|
||||
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction dtracket-typingL
|
||||
lookup : Γ x -> t or #f
|
||||
[(lookup ∅ x) #f]
|
||||
[(lookup (Γ x : t) x) t]
|
||||
[(lookup (Γ x_0 : t_0) x_1) (lookup Γ x_1)])
|
||||
(define-metafunction dtracket-typingL
|
||||
result-type : Σ t -> t or #f
|
||||
[(result-type Σ (Π (x : t) e)) (result-type Σ e)]
|
||||
[(result-type Σ x) ,(and (term (lookup Σ x)) (term x))]
|
||||
[(result-type Σ t) #f])
|
||||
(module+ test
|
||||
(define Σ (term (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))))
|
||||
(check-equal? (term nat) (term (result-type ,Σ (Π (x : nat) nat))))
|
||||
(check-equal? (term nat) (term (result-type ,Σ nat))))
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction dtracket-typingL
|
||||
remove : Γ x -> Γ
|
||||
[(remove ∅ x) ∅]
|
||||
[(remove (Γ x : t) x) Γ]
|
||||
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
|
||||
(define-judgment-form dtracket-typingL
|
||||
#:mode (constructor-for I I O)
|
||||
#:contract (constructor-for Σ t x)
|
||||
|
||||
(define-metafunction dtracket-typingL
|
||||
result-type : Σ t -> t or #f
|
||||
[(result-type Σ (Π (x : t) e)) (result-type Σ e)]
|
||||
[(result-type Σ x) ,(and (term (lookup Σ x)) (term x))]
|
||||
[(result-type Σ t) #f])
|
||||
(module+ test
|
||||
(define Σ (term (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))))
|
||||
(check-equal? (term nat) (term (result-type ,Σ (Π (x : nat) nat))))
|
||||
(check-equal? (term nat) (term (result-type ,Σ nat))))
|
||||
[(where t_0 (result-type Σ t))
|
||||
-------------
|
||||
(constructor-for (Σ x : t) t_0 x)]
|
||||
|
||||
(define-judgment-form dtracket-typingL
|
||||
#:mode (constructor-for I I O)
|
||||
#:contract (constructor-for Σ t x)
|
||||
[(constructor-for Σ t_1 x)
|
||||
-------------
|
||||
(constructor-for (Σ x_0 : t_0) t_1 x)])
|
||||
(module+ test
|
||||
(check-true
|
||||
(judgment-holds (constructor-for ((∅ truth : Type) T : truth) truth T)))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(constructor-for ((∅ nat : Type) zero : nat)
|
||||
nat zero)))
|
||||
(check set=?
|
||||
(judgment-holds
|
||||
(constructor-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
nat x) x)
|
||||
(list (term zero) (term s))))
|
||||
(define-metafunction dtracket-typingL
|
||||
constructors-for : Σ t (x ...) -> #t or #f
|
||||
[(constructors-for Σ t (x ...))
|
||||
,((lambda (x y) (and (set=? x y) (= (length x) (length y))))
|
||||
(term (x ...))
|
||||
(judgment-holds (constructor-for Σ t x_00) x_00))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(term (constructors-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
nat (zero s))))
|
||||
(check-false
|
||||
(term (constructors-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
nat (zero)))))
|
||||
|
||||
[(where t_0 (result-type Σ t))
|
||||
-------------
|
||||
(constructor-for (Σ x : t) t_0 x)]
|
||||
(define-metafunction dtracketL
|
||||
branch-type : t t t -> t
|
||||
[(branch-type t_ind (Π (x_0 : t) e_0) (Π (x_1 : t) e_1))
|
||||
(branch-type t_ind e_0 e_1)]
|
||||
[(branch-type t_ind t_ind t) t])
|
||||
(module+ test
|
||||
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ zero) Type)))
|
||||
(check-equal? (term nat) (term (branch-type nat nat nat)))
|
||||
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ s) (Π (x : nat) Type)))))
|
||||
|
||||
[(constructor-for Σ t_1 x)
|
||||
-------------
|
||||
(constructor-for (Σ x_0 : t_0) t_1 x)])
|
||||
(module+ test
|
||||
(check-true
|
||||
(judgment-holds (constructor-for ((∅ truth : Type) T : truth) truth T)))
|
||||
(check-true
|
||||
(judgment-holds
|
||||
(constructor-for ((∅ nat : Type) zero : nat)
|
||||
nat zero)))
|
||||
(check set=?
|
||||
(judgment-holds
|
||||
(constructor-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
nat x) x)
|
||||
(list (term zero) (term s))))
|
||||
(define-metafunction dtracket-typingL
|
||||
constructors-for : Σ t (x ...) -> #t or #f
|
||||
[(constructors-for Σ t (x ...))
|
||||
,((lambda (x y) (and (set=? x y) (= (length x) (length y))))
|
||||
(term (x ...))
|
||||
(judgment-holds (constructor-for Σ t x_00) x_00))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(term (constructors-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
nat (zero s))))
|
||||
(check-false
|
||||
(term (constructors-for (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
nat (zero)))))
|
||||
(define-metafunction dtracket-typingL
|
||||
branch-types-match : Σ (x ...) (t ...) t t -> #t or #f
|
||||
[(branch-types-match Σ (x ...) (t_11 ...) t t_1)
|
||||
,(andmap (curry equal? (term t)) (term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(term (branch-types-match ((∅ truth : Type) T : truth) () () Type nat)))
|
||||
(check-true
|
||||
(term (branch-types-match ,Σ (zero s) (Type (Π (x : nat) Type)) Type nat)))
|
||||
(check-true
|
||||
(term (branch-types-match ,Σ (zero s) (nat (Π (x : nat) nat)) nat nat))))
|
||||
|
||||
(define-metafunction dtracketL
|
||||
branch-type : t t t -> t
|
||||
[(branch-type t_ind (Π (x_0 : t) e_0) (Π (x_1 : t) e_1))
|
||||
(branch-type t_ind e_0 e_1)]
|
||||
[(branch-type t_ind t_ind t) t])
|
||||
(module+ test
|
||||
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ zero) Type)))
|
||||
(check-equal? (term nat) (term (branch-type nat nat nat)))
|
||||
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ s) (Π (x : nat) Type)))))
|
||||
(define-metafunction dtracketL
|
||||
positive : t any -> #t or #f
|
||||
;; Type; not a inductive constructor
|
||||
[(positive U any) #t]
|
||||
;; nat
|
||||
[(positive x_0 x_0) #t]
|
||||
;; nat -> t_1 ... -> nat
|
||||
[(positive (Π (x : x_1) t_1) x_0)
|
||||
(positive t_1 x_0)]
|
||||
;; Type -> t_1 ... -> nat
|
||||
[(positive (Π (x : U) t_1) x_0)
|
||||
(positive t_1 x_0)]
|
||||
;; (t_0 -> t_2) -> t_1 ... -> nat
|
||||
[(positive (Π (x : (Π (x_1 : t_0) t_2)) t_1) x_0)
|
||||
,(and (term (copositive (Π (x_1 : t_0) t_2) x_0)) (term (positive t_1 x_0)))])
|
||||
|
||||
(define-metafunction dtracket-typingL
|
||||
branch-types-match : Σ (x ...) (t ...) t t -> #t or #f
|
||||
[(branch-types-match Σ (x ...) (t_11 ...) t t_1)
|
||||
,(andmap (curry equal? (term t)) (term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(term (branch-types-match ((∅ truth : Type) T : truth) () () Type nat)))
|
||||
(check-true
|
||||
(term (branch-types-match ,Σ (zero s) (Type (Π (x : nat) Type)) Type nat)))
|
||||
(check-true
|
||||
(term (branch-types-match ,Σ (zero s) (nat (Π (x : nat) nat)) nat nat))))
|
||||
(define-metafunction dtracketL
|
||||
copositive : t any -> #t or #f
|
||||
[(copositive U any) #t]
|
||||
[(copositive x_0 x_0) #f]
|
||||
[(copositive (Π (x : x_0) t_1) x_0) #f]
|
||||
;; x_1 -> t_1 ... -> nat
|
||||
[(copositive (Π (x : x_1) t_1) x_0)
|
||||
(positive t_1 x_0)]
|
||||
[(copositive (Π (x : U) t_1) x_0)
|
||||
(positive t_1 x_0)]
|
||||
[(copositive (Π (x : (Π (x_1 : t_0) t_2)) t_1) x_0)
|
||||
,(and (term (positive (Π (x_1 : t_0) t_2) x_0)) (term (copositive t_1 x_0)))])
|
||||
|
||||
(define-judgment-form dtracket-typingL
|
||||
#:mode (wf I I)
|
||||
#:contract (wf Σ Γ)
|
||||
(module+ test
|
||||
(check-true (term (positive nat nat)))
|
||||
(check-true (term (positive (Π (x : nat) nat) nat)))
|
||||
;; (nat -> nat) -> nat
|
||||
(check-false (term (positive (Π (x : (Π (y : nat) nat)) nat) nat)))
|
||||
;; (Type -> nat) -> nat
|
||||
(check-true (term (positive (Π (x : (Π (y : Type) nat)) nat) nat)))
|
||||
;; (((nat -> Type) -> nat) -> nat)
|
||||
(check-true (term (positive (Π (x : (Π (y : (Π (x : nat) Type)) nat)) nat) nat)))
|
||||
(check-false (term (positive (Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat) nat)))
|
||||
|
||||
[-----------------
|
||||
(wf ∅ ∅)]
|
||||
(check-true (term (positive Type #f)))
|
||||
)
|
||||
|
||||
[(types Σ Γ t U)
|
||||
-----------------
|
||||
(wf Σ (Γ x : t))]
|
||||
(define-judgment-form dtracket-typingL
|
||||
#:mode (wf I I)
|
||||
#:contract (wf Σ Γ)
|
||||
|
||||
[(types Σ ∅ t U)
|
||||
-----------------
|
||||
(wf (Σ x : t) ∅)])
|
||||
(module+ test
|
||||
(check-true (judgment-holds (wf ∅ ∅)))
|
||||
(check-true (judgment-holds (wf (∅ truth : Type) ∅)))
|
||||
(check-true (judgment-holds (wf ∅ (∅ x : Type))))
|
||||
(check-true (judgment-holds (wf (∅ nat : Type) (∅ x : nat))))
|
||||
(check-true (judgment-holds (wf (∅ nat : Type) (∅ x : (Π (x : nat) nat))))))
|
||||
[-----------------
|
||||
(wf ∅ ∅)]
|
||||
|
||||
(define-judgment-form dtracket-typingL
|
||||
#:mode (types I I I O)
|
||||
#:contract (types Σ Γ e t)
|
||||
[(types Σ Γ t U)
|
||||
-----------------
|
||||
(wf Σ (Γ x : t))]
|
||||
|
||||
[(unv-ok U_0 U_1)
|
||||
(wf Σ Γ)
|
||||
----------------- "DTR-Axiom"
|
||||
(types Σ Γ U_0 U_1)]
|
||||
[(types Σ ∅ t U)
|
||||
(side-condition (positive t (result-type Σ t)))
|
||||
-----------------
|
||||
(wf (Σ x : t) ∅)])
|
||||
(module+ test
|
||||
(check-true (judgment-holds (wf ∅ ∅)))
|
||||
(check-true (judgment-holds (wf (∅ truth : Type) ∅)))
|
||||
(check-true (judgment-holds (wf ∅ (∅ x : Type))))
|
||||
(check-true (judgment-holds (wf (∅ nat : Type) (∅ x : nat))))
|
||||
(check-true (judgment-holds (wf (∅ nat : Type) (∅ x : (Π (x : nat) nat))))))
|
||||
|
||||
[(where t (lookup Σ x))
|
||||
----------------- "DTR-Inductive"
|
||||
(types Σ Γ x t)]
|
||||
(define-judgment-form dtracket-typingL
|
||||
#:mode (types I I I O)
|
||||
#:contract (types Σ Γ e t)
|
||||
|
||||
[(where t (lookup Γ x))
|
||||
----------------- "DTR-Start"
|
||||
(types Σ Γ x t)]
|
||||
[(unv-ok U_0 U_1)
|
||||
(wf Σ Γ)
|
||||
----------------- "DTR-Axiom"
|
||||
(types Σ Γ U_0 U_1)]
|
||||
|
||||
[(types Σ Γ t_0 U_1)
|
||||
(types Σ (Γ x : t_0) t U_2)
|
||||
(unv-kind U_1 U_2 U)
|
||||
----------------- "DTR-Product"
|
||||
(types Σ Γ (Π (x : t_0) t) U)]
|
||||
[(where t (lookup Σ x))
|
||||
----------------- "DTR-Inductive"
|
||||
(types Σ Γ x t)]
|
||||
|
||||
[(types Σ Γ e_0 (Π (x : t_0) t_1))
|
||||
(types Σ Γ e_1 t_0)
|
||||
----------------- "DTR-Application"
|
||||
(types Σ Γ (e_0 e_1) (subst t_1 x e_1))]
|
||||
[(where t (lookup Γ x))
|
||||
----------------- "DTR-Start"
|
||||
(types Σ Γ x t)]
|
||||
|
||||
[(types Σ (Γ x : t_0) e t_1)
|
||||
(types Σ Γ (Π (x : t_0) t_1) U)
|
||||
----------------- "DTR-Abstraction"
|
||||
(types Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
[(types Σ Γ t_0 U_1)
|
||||
(types Σ (Γ x : t_0) t U_2)
|
||||
(unv-kind U_1 U_2 U)
|
||||
----------------- "DTR-Product"
|
||||
(types Σ Γ (Π (x : t_0) t) U)]
|
||||
|
||||
[(types Σ Γ e t_1)
|
||||
(side-condition (constructors-for Σ t_1 (x_0 x_1 ...)))
|
||||
(types Σ Γ e_0 t_00)
|
||||
(types Σ Γ e_1 t_11) ...
|
||||
;; TODO Some of these meta-functions aren't very consistent in terms
|
||||
;; of interface
|
||||
(where t (branch-type t_1 (lookup Σ x_0) t_00))
|
||||
(side-condition (branch-types-match Σ (x_1 ...) (t_11 ...) t t_1))
|
||||
----------------- "DTR-Case"
|
||||
(types Σ Γ (case e (x_0 e_0) (x_1 e_1) ...) t)]
|
||||
[(types Σ Γ e_0 (Π (x : t_0) t_1))
|
||||
(types Σ Γ e_1 t_0)
|
||||
----------------- "DTR-Application"
|
||||
(types Σ Γ (e_0 e_1) (subst t_1 x e_1))]
|
||||
|
||||
;; TODO: beta-equiv
|
||||
;; This rule is no good for algorithmic checking; Redex infinitly
|
||||
;; searches it.
|
||||
;; Perhaps something closer to Zombies = type would be better.
|
||||
;; For now, reduce types
|
||||
#;[(types Γ e (in-hole E t))
|
||||
(where t_0 (in-hole E t))
|
||||
(where t_1 ,(car (apply-reduction-relation* ==β (term t_0))))
|
||||
(types Γ t_1 U)
|
||||
----------------- "DTR-Conversion"
|
||||
(types Γ e t_1)])
|
||||
(module+ test
|
||||
(check-true (judgment-holds (types ∅ ∅ Type (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : Type) Type (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : Type) x Type)))
|
||||
(check-true (judgment-holds (types ∅ ((∅ x_0 : Type) x_1 : Type)
|
||||
(Π (x_3 : x_0) x_1) Type)))
|
||||
[(types Σ (Γ x : t_0) e t_1)
|
||||
(types Σ Γ (Π (x : t_0) t_1) U)
|
||||
----------------- "DTR-Abstraction"
|
||||
(types Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (x : Type) x) (Π (x : Type) Type))))
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (y : Type) (λ (x : y) x))
|
||||
(Π (y : Type) (Π (x : y) y)))))
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
[(types Σ Γ e t_1)
|
||||
(side-condition (constructors-for Σ t_1 (x_0 x_1 ...)))
|
||||
(types Σ Γ e_0 t_00)
|
||||
(types Σ Γ e_1 t_11) ...
|
||||
;; TODO Some of these meta-functions aren't very consistent in terms
|
||||
;; of interface
|
||||
(where t (branch-type t_1 (lookup Σ x_0) t_00))
|
||||
(side-condition (branch-types-match Σ (x_1 ...) (t_11 ...) t t_1))
|
||||
----------------- "DTR-Case"
|
||||
(types Σ Γ (case e (x_0 e_0) (x_1 e_1) ...) t)]
|
||||
|
||||
;; TODO: beta-equiv
|
||||
;; This rule is no good for algorithmic checking; Redex infinitly
|
||||
;; searches it.
|
||||
;; Perhaps something closer to Zombies = type would be better.
|
||||
;; For now, reduce types
|
||||
#;[(types Γ e (in-hole E t))
|
||||
(where t_0 (in-hole E t))
|
||||
(where t_1 ,(car (apply-reduction-relation* ==β (term t_0))))
|
||||
(types Γ t_1 U)
|
||||
----------------- "DTR-Conversion"
|
||||
(types Γ e t_1)])
|
||||
(module+ test
|
||||
(check-true (judgment-holds (types ∅ ∅ Type (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : Type) Type (Unv 0))))
|
||||
(check-true (judgment-holds (types ∅ (∅ x : Type) x Type)))
|
||||
(check-true (judgment-holds (types ∅ ((∅ x_0 : Type) x_1 : Type)
|
||||
(Π (x_3 : x_0) x_1) Type)))
|
||||
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (x : Type) x) (Π (x : Type) Type))))
|
||||
(check-true (judgment-holds (types ∅ ∅ (λ (y : Type) (λ (x : y) x))
|
||||
(Π (y : Type) (Π (x : y) y)))))
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
∅
|
||||
T
|
||||
truth)))
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
∅
|
||||
Type
|
||||
(Unv 0))))
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
∅
|
||||
(case T (T Type))
|
||||
(Unv 0))))
|
||||
|
||||
(check-false
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
∅
|
||||
(case T (T Type) (T Type))
|
||||
(Unv 0))))
|
||||
(define-syntax-rule (nat-test syn ...)
|
||||
(check-true (judgment-holds
|
||||
(types (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
syn ...))))
|
||||
(nat-test ∅ (Π (x : nat) nat) Type)
|
||||
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
||||
(nat-test ∅ (case zero (zero zero) (s (λ (x : nat) x)))
|
||||
nat)
|
||||
(nat-test ∅ nat Type)
|
||||
(nat-test ∅ zero nat)
|
||||
(nat-test ∅ s (Π (x : nat) nat))
|
||||
(nat-test ∅ (s zero) nat)
|
||||
(nat-test ∅ (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
|
||||
nat)
|
||||
(nat-test ∅ (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
|
||||
nat)
|
||||
(check-false (judgment-holds
|
||||
(types (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
∅
|
||||
T
|
||||
truth)))
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
∅
|
||||
Type
|
||||
(Unv 0))))
|
||||
(check-true
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
∅
|
||||
(case T (T Type))
|
||||
(Unv 0))))
|
||||
(case zero (zero (s zero)))
|
||||
nat)))
|
||||
(define Σ0 (term ∅))
|
||||
(define lam (term (λ (nat : Type) nat)))
|
||||
(check-equal?
|
||||
(term (Π (nat : Type) Type))
|
||||
(judgment-holds (types ,Σ0 ∅ ,lam t) t))
|
||||
(define Σ2 (term (((∅ nat : Type) z : nat) s : (Π (x : nat) nat))))
|
||||
(check-equal?
|
||||
(term (Π (nat : Type) Type))
|
||||
(judgment-holds (types ,Σ2 ∅ ,lam t) t))
|
||||
(check-equal?
|
||||
(term (Π (x : (Π (y : Type) y)) nat))
|
||||
(judgment-holds (types (∅ nat : Type) ∅ (λ (x : (Π (y : Type) y)) (x nat))
|
||||
t) t))
|
||||
(check-equal?
|
||||
(term (Π (y : Type) Type))
|
||||
(judgment-holds (types (∅ nat : Type) ∅ (λ (y : Type) y) t) t))
|
||||
(check-equal?
|
||||
(term Type)
|
||||
(judgment-holds (types (∅ nat : Type) ∅
|
||||
((λ (x : (Π (y : Type) Type)) (x nat))
|
||||
(λ (y : Type) y))
|
||||
t) t)))
|
||||
|
||||
(check-false
|
||||
(judgment-holds (types ((∅ truth : Type) T : truth)
|
||||
∅
|
||||
(case T (T Type) (T Type))
|
||||
(Unv 0))))
|
||||
(define-syntax-rule (nat-test syn ...)
|
||||
(check-true (judgment-holds
|
||||
(types (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
syn ...))))
|
||||
(nat-test ∅ (Π (x : nat) nat) Type)
|
||||
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
||||
(nat-test ∅ (case zero (zero zero) (s (λ (x : nat) x)))
|
||||
nat)
|
||||
(nat-test ∅ nat Type)
|
||||
(nat-test ∅ zero nat)
|
||||
(nat-test ∅ s (Π (x : nat) nat))
|
||||
(nat-test ∅ (s zero) nat)
|
||||
(nat-test ∅ (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
|
||||
nat)
|
||||
(nat-test ∅ (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
|
||||
nat)
|
||||
(check-false (judgment-holds
|
||||
(types (((∅ nat : Type) zero : nat) s : (Π (x : nat) nat))
|
||||
∅
|
||||
(case zero (zero (s zero)))
|
||||
nat))))
|
||||
(define-judgment-form dtracket-typingL
|
||||
#:mode (type-check I I I)
|
||||
#:contract (type-check Γ e t)
|
||||
|
||||
(define-judgment-form dtracket-typingL
|
||||
#:mode (type-check I I I)
|
||||
#:contract (type-check Γ e t)
|
||||
[(types Σ ∅ e t)
|
||||
---------------
|
||||
(type-check Σ e (reduce t))])
|
||||
|
||||
[(types Σ ∅ e t)
|
||||
---------------
|
||||
(type-check Σ e (reduce t))])
|
||||
;; Infer-core Language
|
||||
;; A relaxed core where annotation are optional.
|
||||
(define-extended-language dtracket-surfaceL dtracketL
|
||||
(v ::= .... (λ x e) (Π t e))
|
||||
(t e ::= .... (data x (x : t) (x : t) ...) (case e ([e e] ...)) (e : t)))
|
||||
|
||||
;; Infer-core Language
|
||||
;; A relaxed core where annotation are optional.
|
||||
(define-extended-language dtracket-surfaceL dtracketL
|
||||
(v ::= .... (λ x e) (Π t e))
|
||||
(t e ::= .... (data x (x : t) (x : t) ...) (case e ([e e] ...)) (e : t)))
|
||||
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
#;(define-judgment-form dtracket-typingL
|
||||
#:mode (synth I I O)
|
||||
#:contract (synth Γ t t)
|
||||
|
||||
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
#;(define-judgment-form dtracket-typingL
|
||||
#:mode (synth I I O)
|
||||
#:contract (synth Γ t t)
|
||||
[(unv-ok U_0 U_1)
|
||||
----------------- "DTR-SAxiom"
|
||||
(synth ∅ U_0 U_1)]
|
||||
|
||||
[(unv-ok U_0 U_1)
|
||||
----------------- "DTR-SAxiom"
|
||||
(synth ∅ U_0 U_1)]
|
||||
[(where t (lookup Γ x))
|
||||
(synth (remove Γ x) t U)
|
||||
----------------- "DTR-SStart"
|
||||
(synth Γ x t)]
|
||||
|
||||
[(where t (lookup Γ x))
|
||||
(synth (remove Γ x) t U)
|
||||
----------------- "DTR-SStart"
|
||||
(synth Γ x t)]
|
||||
[(synth Γ t t_1) (synth Γ t_0 U)
|
||||
----------------- "DTR-SWeakening"
|
||||
(synth (Γ x : t_0) t t_1)]
|
||||
|
||||
[(synth Γ t t_1) (synth Γ t_0 U)
|
||||
----------------- "DTR-SWeakening"
|
||||
(synth (Γ x : t_0) t t_1)]
|
||||
[(check (Γ x : t_0) e t_1)
|
||||
----------------- "DTR-SAbstraction"
|
||||
(check Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
|
||||
[(check (Γ x : t_0) e t_1)
|
||||
----------------- "DTR-SAbstraction"
|
||||
(check Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
[(synth Γ e_0 (Π (x : t_0) t_1))
|
||||
(check Γ e_1 t_0)
|
||||
----------------- "DTR-SApplication"
|
||||
(synth Γ (e_0 e_1) (subst t_1 x e_1))]
|
||||
|
||||
[(synth Γ e_0 (Π (x : t_0) t_1))
|
||||
(check Γ e_1 t_0)
|
||||
----------------- "DTR-SApplication"
|
||||
(synth Γ (e_0 e_1) (subst t_1 x e_1))]
|
||||
[(check Γ e t)
|
||||
----------------- "DTR-SAnnotate"
|
||||
(synth Γ (e : t) t)]) )
|
||||
|
||||
[(check Γ e t)
|
||||
----------------- "DTR-SAnnotate"
|
||||
(synth Γ (e : t) t)])
|
||||
(module sugar racket
|
||||
(require
|
||||
racket/trace
|
||||
racket/pretty
|
||||
(submod ".." core)
|
||||
redex/reduction-semantics
|
||||
(for-syntax
|
||||
racket
|
||||
racket/pretty
|
||||
racket/trace
|
||||
(except-in (submod ".." core) remove)
|
||||
redex/reduction-semantics))
|
||||
(provide
|
||||
;; Basic syntax
|
||||
#%module-begin
|
||||
(rename-out
|
||||
[dep-lambda lambda]
|
||||
[dep-lambda λ]
|
||||
[dep-app #%app]
|
||||
|
||||
#;(define-judgment-form dtracket-typingL
|
||||
#:mode (check I I I)
|
||||
#:contract (check Γ t t)
|
||||
[dep-forall forall]
|
||||
[dep-forall ∀]
|
||||
|
||||
[(check (Γ x : t_0) e t_1)
|
||||
----------------- "DTR-Abstraction"
|
||||
(check Γ (λ x e) (Π (x : t_0) t_1))]
|
||||
[dep-inductive data]
|
||||
[dep-case case]
|
||||
|
||||
[(synth Γ e t)
|
||||
----------------- "DTR-SSynth"
|
||||
(check Γ e t)])
|
||||
#;(module+ test
|
||||
(check-equal?
|
||||
(list (term (Unv 0)))
|
||||
(judgment-holds (synth ∅ Type U) U))
|
||||
(check-equal?
|
||||
(list (term Unv 0))
|
||||
(judgment-holds (synth (∅ x : Type) Type U)))
|
||||
(check-equal?
|
||||
(list (term Type))
|
||||
(judgment-holds (synth (∅ x : Type) x U)))
|
||||
(check-equal?
|
||||
(list (term Type))
|
||||
(judgment-holds (synth ((∅ x_0 : Type) x_1 : Type) (Π (x_3 : x_0) x_1) U)))
|
||||
[dep-var #%top])
|
||||
;; DYI syntax extension
|
||||
define-syntax
|
||||
(rename-out [dep-define define])
|
||||
syntax-case
|
||||
syntax-rules
|
||||
(for-syntax (all-from-out racket)))
|
||||
|
||||
(check-equal?
|
||||
(list ())
|
||||
(judgment-holds (synth ∅ (λ (x : Type) x) (Π (x : Type) Type))))
|
||||
(check-true (judgment-holds (types ∅ (λ (y : Type) (λ (x : y) x))
|
||||
(Π (y : Type) (Π (x : y) y))))))
|
||||
(begin-for-syntax
|
||||
(current-trace-notify
|
||||
(parameterize ([pretty-print-depth #f]
|
||||
[pretty-print-columns 'infinity])
|
||||
(lambda (x)
|
||||
(pretty-display x)
|
||||
(newline))))
|
||||
(current-trace-print-args
|
||||
(let ([cwtpr (current-trace-print-args)])
|
||||
(lambda (s l kw l2 n)
|
||||
(cwtpr s (map syntax->datum l) kw l2 n))))
|
||||
(current-trace-print-results
|
||||
(let ([cwtpr (current-trace-print-results)])
|
||||
(lambda (s l n)
|
||||
(cwtpr s (map syntax->datum l) n)))))
|
||||
|
||||
;; WEEEEEEE
|
||||
(define gamma
|
||||
(make-parameter (term ∅)
|
||||
(lambda (x)
|
||||
(unless (redex-match? dtracket-typingL Γ x)
|
||||
(error 'core-error "We build a bad gamma ~s" x))
|
||||
x)))
|
||||
(define sigma
|
||||
(make-parameter (term ∅)#;(term (((∅ nat : Type) z : nat) s : (Π (x : nat) nat)))
|
||||
(lambda (x)
|
||||
(unless (redex-match? dtracket-typingL Σ x)
|
||||
(error 'core-error "We build a bad sigma ~s" x))
|
||||
x)))
|
||||
#;(define-syntax (-> syn)
|
||||
(syntax-case syn ()
|
||||
[(_ t1 t2)
|
||||
(with-syntax ([(x) (generate-temporaries '(1))])
|
||||
#'(dep-forall (x : t1) t2))]))
|
||||
|
||||
(define-syntax (dep-lambda syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e)
|
||||
#`(let* ([lam (term (λ (x : ,t)
|
||||
,(let ([x (term x)])
|
||||
(parameterize ([gamma (term (,(gamma) ,x : ,t))])
|
||||
e))))])
|
||||
(unless (judgment-holds (types ,(sigma) ,(gamma) ,lam t_0))
|
||||
(error 'type-checking "Term is ill-typed: ~s" lam))
|
||||
lam)]))
|
||||
|
||||
(define-syntax (curry-app syn)
|
||||
(syntax-case syn ()
|
||||
[(_ e1 e2) #'(term (,e1 ,e2))]
|
||||
[(_ e1 e2 e3 ...)
|
||||
#'(curry-app (term (,e1 ,e2)) e3 ...)]))
|
||||
|
||||
(define-syntax (dep-app syn)
|
||||
(syntax-case syn ()
|
||||
[(_ e1 e2 ...)
|
||||
#'(term (reduce ,(curry-app e1 e2 ...))) ]))
|
||||
|
||||
(define-syntax-rule (dep-case e (x0 e0) ...)
|
||||
(term (case ,e (,x0 ,e0) ...)))
|
||||
|
||||
(define-syntax (dep-inductive syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ i : ti (x1 : t1) ...)
|
||||
#'(begin
|
||||
(sigma (term (,(sigma) i : ,ti)))
|
||||
(for ([x (list (term x1) ...)]
|
||||
[t (list (term ,t1) ...)])
|
||||
(sigma (term (,(sigma) ,x : ,t)))))]))
|
||||
|
||||
;; TODO: Lots of shared code with dep-lambda
|
||||
(define-syntax (dep-forall syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e)
|
||||
#`(let ([tmp (term (Π (x : ,t)
|
||||
,(let ([x (term x)])
|
||||
(parameterize ([gamma (term (,(gamma) ,x : ,t))])
|
||||
e))))])
|
||||
(unless (judgment-holds (types ,(sigma) ,(gamma) ,tmp U_0))
|
||||
(error 'type-checking "Term is ill-typed: ~s" tmp))
|
||||
tmp)]))
|
||||
|
||||
(define-syntax (dep-var syn)
|
||||
(syntax-case syn ()
|
||||
[(_ . id)
|
||||
#'(let ()
|
||||
(unless (judgment-holds (types ,(sigma) ,(gamma) ,(term id) t_0))
|
||||
(error 'unbound "Unbound variable: ~s" (term id)))
|
||||
(term id))]))
|
||||
|
||||
(define-syntax (curry-lambda syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ ((x : t) (xr : tr) ...) e)
|
||||
#'(dep-lambda (x : t) (curry-lambda ((xr : tr) ...) e))]
|
||||
[(_ () e) #'e]))
|
||||
;; TODO: Syntax-parse
|
||||
(define-syntax (dep-define syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (name (x : t) ...) e)
|
||||
#'(define name (curry-lambda ((x : t) ...) e))]
|
||||
[(_ id e)
|
||||
#'(define id e)])))
|
||||
|
||||
(require 'sugar)
|
||||
(provide (all-from-out 'sugar))
|
||||
|
|
Loading…
Reference in New Issue
Block a user