diff --git a/README.md b/README.md index 859cb3c..6894098 100644 --- a/README.md +++ b/README.md @@ -15,20 +15,30 @@ cur (plural curs) Disclaimer ========== Cur is currently under active hackery and is not fit for use for any -particular purpose. It is fraught with unreadable code, errors, and -hacks that should never have been written by a reasonable human being. +particular purpose. It is fraught with unreadable code, errors, +performance bugs, and hacks that should never have been written by a +reasonable human being. These may or may not be fixed shortly. Getting started =============== +Easy mode: Install cur via `raco pkg install cur`. +Advanced mode: +Cur is actually distributed as several packages. +`cur-lib` provides the implementation and all standard +libraries. +`cur-doc` provides the documentation. +`cur-test` provides a test suite and examples. + + Try it out: open up DrRacket and put the following in the definition area: ```racket #lang cur -(require +(require cur/stdlib/bool cur/stdlib/nat) @@ -44,27 +54,20 @@ Try entering the following in the interaction area: See the docs: `raco docs cur`. -Most of the standard library is currently undocumented, so just see the source. - Going further ============= -Open up `examples/example.rkt` to see a tour of Cur's features. - -Open up `examples/stlc.rkt` to see an example of what advanced meta-programming can let you do. - -Open up `oll.rkt` to see the implementation of the meta-programs used to -enable `examples/stlc.rkt`, including the parsers for BNF syntax and inference rule -syntax, and Coq and LaTeX generators. +Open up `cur-tests/cur/tests/stlc.rkt` to see an example of the +simply-typed lambda-calculus modeled in Cur, with a parser and syntax +extension to enable deeply embedding. Open up `examples/proofs-for-free.rkt` to see an implementation of the translation defined in [Proofs for Free](http://staff.city.ac.uk/~ross/papers/proofs.html) as a meta-program. -Open up `stdlib/tactics` to see tactics, implemented entirely via -meta-programming. +Open up `cur-lib/cur/stdlib/tactics` to see one way to implement tactics in Cur. -Open up anything in `stdlib/` to see some standard dependent-type +Open up anything in `cur-lib/cur/stdlib/` to see some standard dependent-type formalisms. -Open up `curnel/redex-core.rkt` to see the entire "trusted" (after a -large test suite) core. +Open up `cur-lib/cur/curnel/redex-core.rkt` to see the entire +implementation of the core language, <600 lines of code. diff --git a/scribblings/cur.scrbl b/cur-doc/cur/cur.scrbl similarity index 91% rename from scribblings/cur.scrbl rename to cur-doc/cur/cur.scrbl index f3fcc76..bd335ac 100644 --- a/scribblings/cur.scrbl +++ b/cur-doc/cur/cur.scrbl @@ -1,6 +1,6 @@ #lang scribble/manual @(require - "defs.rkt" + "scribblings/defs.rkt" racket/function) @title[#:style '(toc)]{Cur} @@ -42,7 +42,7 @@ Everything else in @racketmodname[cur] is provided by untrusted user-land code-- @local-table-of-contents[] -@include-section{curnel.scrbl} -@include-section{reflection.scrbl} -@include-section{stdlib.scrbl} -@include-section{oll.scrbl} +@include-section{scribblings/curnel.scrbl} +@include-section{scribblings/reflection.scrbl} +@include-section{scribblings/stdlib.scrbl} +@include-section{scribblings/oll.scrbl} diff --git a/cur-doc/cur/info.rkt b/cur-doc/cur/info.rkt new file mode 100644 index 0000000..843460e --- /dev/null +++ b/cur-doc/cur/info.rkt @@ -0,0 +1,2 @@ +#lang info +(define scribblings '(("cur.scrbl" (multi-page)))) diff --git a/scribblings/curnel.scrbl b/cur-doc/cur/scribblings/curnel.scrbl similarity index 100% rename from scribblings/curnel.scrbl rename to cur-doc/cur/scribblings/curnel.scrbl diff --git a/scribblings/defs.rkt b/cur-doc/cur/scribblings/defs.rkt similarity index 100% rename from scribblings/defs.rkt rename to cur-doc/cur/scribblings/defs.rkt diff --git a/scribblings/oll.scrbl b/cur-doc/cur/scribblings/oll.scrbl similarity index 100% rename from scribblings/oll.scrbl rename to cur-doc/cur/scribblings/oll.scrbl diff --git a/scribblings/reflection.scrbl b/cur-doc/cur/scribblings/reflection.scrbl similarity index 100% rename from scribblings/reflection.scrbl rename to cur-doc/cur/scribblings/reflection.scrbl diff --git a/scribblings/stdlib.scrbl b/cur-doc/cur/scribblings/stdlib.scrbl similarity index 100% rename from scribblings/stdlib.scrbl rename to cur-doc/cur/scribblings/stdlib.scrbl diff --git a/scribblings/stdlib/bool.scrbl b/cur-doc/cur/scribblings/stdlib/bool.scrbl similarity index 100% rename from scribblings/stdlib/bool.scrbl rename to cur-doc/cur/scribblings/stdlib/bool.scrbl diff --git a/scribblings/stdlib/maybe.scrbl b/cur-doc/cur/scribblings/stdlib/maybe.scrbl similarity index 100% rename from scribblings/stdlib/maybe.scrbl rename to cur-doc/cur/scribblings/stdlib/maybe.scrbl diff --git a/scribblings/stdlib/nat.scrbl b/cur-doc/cur/scribblings/stdlib/nat.scrbl similarity index 100% rename from scribblings/stdlib/nat.scrbl rename to cur-doc/cur/scribblings/stdlib/nat.scrbl diff --git a/scribblings/stdlib/sugar.scrbl b/cur-doc/cur/scribblings/stdlib/sugar.scrbl similarity index 100% rename from scribblings/stdlib/sugar.scrbl rename to cur-doc/cur/scribblings/stdlib/sugar.scrbl diff --git a/scribblings/stdlib/tactics.scrbl b/cur-doc/cur/scribblings/stdlib/tactics.scrbl similarity index 100% rename from scribblings/stdlib/tactics.scrbl rename to cur-doc/cur/scribblings/stdlib/tactics.scrbl diff --git a/scribblings/stdlib/typeclass.scrbl b/cur-doc/cur/scribblings/stdlib/typeclass.scrbl similarity index 100% rename from scribblings/stdlib/typeclass.scrbl rename to cur-doc/cur/scribblings/stdlib/typeclass.scrbl diff --git a/cur-doc/info.rkt b/cur-doc/info.rkt new file mode 100644 index 0000000..0cf5446 --- /dev/null +++ b/cur-doc/info.rkt @@ -0,0 +1,6 @@ +#lang info +(define collection 'multi) +(define deps '("base" "racket-doc")) +(define build-deps '("scribble-lib" ("cur-lib" #:version "0.2") "sandbox-lib")) +(define pkg-desc "Documentation for \"cur\".") +(define pkg-authors '(wilbowma)) diff --git a/cur.rkt b/cur-lib/cur/cur.rkt similarity index 100% rename from cur.rkt rename to cur-lib/cur/cur.rkt diff --git a/cur-lib/cur/curnel/redex-core.rkt b/cur-lib/cur/curnel/redex-core.rkt new file mode 100644 index 0000000..47352a3 --- /dev/null +++ b/cur-lib/cur/curnel/redex-core.rkt @@ -0,0 +1,590 @@ +#lang racket/base + +(require + racket/function + redex/reduction-semantics) + +(provide + (all-defined-out)) + +(set-cache-size! 10000) + +#| References: + | http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf + | https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf + | http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf + | http://people.cs.kuleuven.be/~jesper.cockx/Without-K/Pattern-matching-without-K.pdf + | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.74 + | http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf + |# + +#| ttL is the core language of Cur. Very similar to TT (Idirs core) and Luo's UTT. Surface + | langauge should provide short-hand, such as -> for non-dependent function types, and type + | inference. + |# +(define-language ttL + (i j k ::= natural) + (U ::= (Unv i)) + (t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e) (elim D U)) + ;; Δ (signature). (inductive-name : type ((constructor : type) ...)) + ;; NB: Δ is a map from a name x to a pair of it's type and a map of constructor names to their types + (Δ ::= ∅ (Δ (D : t ((c : t) ...)))) + (D x c ::= variable-not-otherwise-mentioned) + #:binding-forms + (λ (x : t) e #:refers-to x) + (Π (x : t_0) t_1 #:refers-to x)) + +(define x? (redex-match? ttL x)) +(define t? (redex-match? ttL t)) +(define e? (redex-match? ttL e)) +(define U? (redex-match? ttL U)) +(define Δ? (redex-match? ttL Δ)) + +;;; ------------------------------------------------------------------------ +;;; Universe typing + +(define-judgment-form ttL + #:mode (unv-type I O) + #:contract (unv-type U U) + + [(where i_1 ,(add1 (term i_0))) + ----------------- + (unv-type (Unv i_0) (Unv i_1))]) + +;; Universe predicativity rules. Impredicative in (Unv 0) +(define-judgment-form ttL + #:mode (unv-pred I I O) + #:contract (unv-pred U U U) + + [---------------- + (unv-pred (Unv i) (Unv 0) (Unv 0))] + + [(where i_3 ,(max (term i_1) (term i_2))) + ---------------- + (unv-pred (Unv i_1) (Unv i_2) (Unv i_3))]) + +(define-metafunction ttL + α-equivalent? : t t -> #t or #f + [(α-equivalent? t_0 t_1) + ,(alpha-equivalent? ttL (term t_0) (term t_1))]) + +;; Replace x by t_1 in t_0 +(define-metafunction ttL + subst : t x t -> t + [(subst t_0 x t_1) + (substitute t_0 x t_1)]) + +(define-metafunction ttL + subst-all : t (x ...) (e ...) -> t + [(subst-all t () ()) t] + [(subst-all t (x_0 x ...) (e_0 e ...)) + (subst-all (subst t x_0 e_0) (x ...) (e ...))]) + +;;; ------------------------------------------------------------------------ +;;; Primitive Operations on signatures Δ (those operations that do not require contexts) + +;;; TODO: Might be worth maintaining the above bijection between Δ and maps for performance reasons + +;; TODO: This is doing too many things +;; NB: Depends on clause order +(define-metafunction ttL + Δ-ref-type : Δ x -> t or #f + [(Δ-ref-type ∅ x) #f] + [(Δ-ref-type (Δ (x : t any)) x) t] + [(Δ-ref-type (Δ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t] + [(Δ-ref-type (Δ (x_0 : t_0 any)) x) (Δ-ref-type Δ x)]) + +(define-metafunction ttL + Δ-set : Δ x t ((x : t) ...) -> Δ + [(Δ-set Δ x t any) (Δ (x : t any))]) + +(define-metafunction ttL + Δ-union : Δ Δ -> Δ + [(Δ-union Δ ∅) Δ] + [(Δ-union Δ_2 (Δ_1 (x : t any))) + ((Δ-union Δ_2 Δ_1) (x : t any))]) + +;; Returns the inductively defined type that x constructs +;; NB: Depends on clause order +(define-metafunction ttL + Δ-key-by-constructor : Δ x -> x + [(Δ-key-by-constructor (Δ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c) + x] + [(Δ-key-by-constructor (Δ (x_1 : t_1 any)) x) + (Δ-key-by-constructor Δ x)]) + +;; Returns the constructor map for the inductively defined type x_D in the signature Δ +(define-metafunction ttL + Δ-ref-constructor-map : Δ x -> ((x : t) ...) or #f + ;; NB: Depends on clause order + [(Δ-ref-constructor-map ∅ x_D) #f] + [(Δ-ref-constructor-map (Δ (x_D : t_D any)) x_D) + any] + [(Δ-ref-constructor-map (Δ (x_1 : t_1 any)) x_D) + (Δ-ref-constructor-map Δ x_D)]) + +;; TODO: Should not use Δ-ref-type +(define-metafunction ttL + Δ-ref-constructor-type : Δ x x -> t + [(Δ-ref-constructor-type Δ x_D x_ci) + (Δ-ref-type Δ x_ci)]) + +;; Get the list of constructors for the inducitvely defined type x_D +;; NB: Depends on clause order +(define-metafunction ttL + Δ-ref-constructors : Δ x -> (x ...) or #f + [(Δ-ref-constructors ∅ x_D) #f] + [(Δ-ref-constructors (Δ (x_D : t_D ((x : t) ...))) x_D) + (x ...)] + [(Δ-ref-constructors (Δ (x_1 : t_1 any)) x_D) + (Δ-ref-constructors Δ x_D)]) + +;; NB: Depends on clause order +(define-metafunction ttL + sequence-index-of : any (any ...) -> natural + [(sequence-index-of any_0 (any_0 any ...)) + 0] + [(sequence-index-of any_0 (any_1 any ...)) + ,(add1 (term (sequence-index-of any_0 (any ...))))]) + +;; Get the index of the constructor x_ci in the list of constructors for x_D +(define-metafunction ttL + Δ-constructor-index : Δ x x -> natural + [(Δ-constructor-index Δ x_D x_ci) + (sequence-index-of x_ci (Δ-ref-constructors Δ x_D))]) + +;;; ------------------------------------------------------------------------ +;;; Operations that involve contexts. + +(define-extended-language tt-ctxtL ttL + ;; Telescope. + ;; NB: There is a bijection between this an a vector of maps from x to t + (Ξ Φ ::= hole (Π (x : t) Ξ)) + ;; Apply context + ;; NB: There is a bijection between this an a vector expressions + (Θ ::= hole (Θ e))) + +(define Ξ? (redex-match? tt-ctxtL Ξ)) +(define Φ? (redex-match? tt-ctxtL Φ)) +(define Θ? (redex-match? tt-ctxtL Θ)) + +;; TODO: Might be worth it to actually maintain the above bijections, for performance reasons. + +;; Return the parameters of x_D as a telescope Ξ +;; TODO: Define generic traversals of Δ and Γ ? +(define-metafunction tt-ctxtL + Δ-ref-parameter-Ξ : Δ x -> Ξ + [(Δ-ref-parameter-Ξ (Δ (x_D : (in-hole Ξ U) any)) x_D) + Ξ] + [(Δ-ref-parameter-Ξ (Δ (x_1 : t_1 any)) x_D) + (Δ-ref-parameter-Ξ Δ x_D)]) + +;; Applies the term t to the telescope Ξ. +;; TODO: Test +#| TODO: + | This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true + | that (equivalent t (Ξ-apply Ξ t))? + | Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)? Yes. + |# +(define-metafunction tt-ctxtL + Ξ-apply : Ξ t -> t + [(Ξ-apply hole t) t] + [(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))]) + +;; Compose multiple telescopes into a single telescope: +(define-metafunction tt-ctxtL + Ξ-compose : Ξ Ξ ... -> Ξ + [(Ξ-compose Ξ) Ξ] + [(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...) + (Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)]) + +;; Compute the number of arguments in a Ξ +(define-metafunction tt-ctxtL + Ξ-length : Ξ -> natural + [(Ξ-length hole) 0] + [(Ξ-length (Π (x : t) Ξ)) ,(add1 (term (Ξ-length Ξ)))]) + +;; Compute the number of applications in a Θ +(define-metafunction tt-ctxtL + Θ-length : Θ -> natural + [(Θ-length hole) 0] + [(Θ-length (Θ e)) ,(add1 (term (Θ-length Θ)))]) + +;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole. +(define-metafunction tt-ctxtL + Θ-ref : Θ natural -> e or #f + [(Θ-ref hole natural) #f] + [(Θ-ref (in-hole Θ (hole e)) 0) e] + [(Θ-ref (in-hole Θ (hole e)) natural) (Θ-ref Θ ,(sub1 (term natural)))]) + +;;; ------------------------------------------------------------------------ +;;; Computing the types of eliminators + +;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D +(define-metafunction tt-ctxtL + Δ-constructor-telescope : Δ x x -> Ξ + [(Δ-constructor-telescope Δ x_D x_ci) + Ξ + (where (in-hole Ξ (in-hole Θ x_D)) + (Δ-ref-constructor-type Δ x_D x_ci))]) + +;; Returns the parameter arguments as an apply context of the constructor x_ci of the inductively +;; defined type x_D +(define-metafunction tt-ctxtL + Δ-constructor-parameters : Δ x x -> Θ + [(Δ-constructor-parameters Δ x_D x_ci) + Θ + (where (in-hole Ξ (in-hole Θ x_D)) + (Δ-ref-constructor-type Δ x_D x_ci))]) + +;; Inner loop for Δ-constructor-noninductive-telescope +(define-metafunction tt-ctxtL + noninductive-loop : x Φ -> Φ + [(noninductive-loop x_D hole) hole] + [(noninductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)) + (noninductive-loop x_D Φ_1)] + [(noninductive-loop x_D (Π (x : t) Φ_1)) + (Π (x : t) (noninductive-loop x_D Φ_1))]) + +;; Returns the noninductive arguments to the constructor x_ci of the inductively defined type x_D +(define-metafunction tt-ctxtL + Δ-constructor-noninductive-telescope : Δ x x -> Ξ + [(Δ-constructor-noninductive-telescope Δ x_D x_ci) + (noninductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))]) + +;; Inner loop for Δ-constructor-inductive-telescope +;; NB: Depends on clause order +(define-metafunction tt-ctxtL + inductive-loop : x Φ -> Φ + [(inductive-loop x_D hole) hole] + [(inductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)) + (Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-loop x_D Φ_1))] + [(inductive-loop x_D (Π (x : t) Φ_1)) + (inductive-loop x_D Φ_1)]) + +;; Returns the inductive arguments to the constructor x_ci of the inducitvely defined type x_D +(define-metafunction tt-ctxtL + Δ-constructor-inductive-telescope : Δ x x -> Ξ + [(Δ-constructor-inductive-telescope Δ x_D x_ci) + (inductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))]) + +;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with +;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D +(define-metafunction tt-ctxtL + hypotheses-loop : x t Φ -> Φ + [(hypotheses-loop x_D t_P hole) hole] + [(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))) + ;; TODO: Instead of this nonsense, it might be simpler to pass in the type of t_P and use that + ;; as/to compute the type of the hypothesis. + (Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x)))) + (hypotheses-loop x_D t_P Φ_1)) + (where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))]) + +;; Returns the inductive hypotheses required for the elimination method of constructor x_ci for +;; inductive type x_D, when eliminating with motive t_P. +(define-metafunction tt-ctxtL + Δ-constructor-inductive-hypotheses : Δ x x t -> Ξ + [(Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P) + (hypotheses-loop x_D t_P (Δ-constructor-inductive-telescope Δ x_D x_ci))]) + +(define-metafunction tt-ctxtL + Δ-constructor-method-telescope : Δ x x t -> Ξ + [(Δ-constructor-method-telescope Δ x_D x_ci t_P) + (Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci))))) + hole) + (where Θ_p (Δ-constructor-parameters Δ x_D x_ci)) + (where Ξ_a (Δ-constructor-telescope Δ x_D x_ci)) + (where Ξ_h (Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P)) + (where x_mi ,(variable-not-in (term (t_P Δ)) 'x-mi))]) + +;; fold Ξ-compose over map Δ-constructor-method-telescope over the list of constructors +(define-metafunction tt-ctxtL + method-loop : Δ x t (x ...) -> Ξ + [(method-loop Δ x_D t_P ()) hole] + [(method-loop Δ x_D t_P (x_0 x_rest ...)) + (Ξ-compose (Δ-constructor-method-telescope Δ x_D x_0 t_P) (method-loop Δ x_D t_P (x_rest ...)))]) + +;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P +(define-metafunction tt-ctxtL + Δ-methods-telescope : Δ x t -> Ξ + [(Δ-methods-telescope Δ x_D t_P) + (method-loop Δ x_D t_P (Δ-ref-constructors Δ x_D))]) + +;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result +;; is in universe U. +;; +;; The type of (elim x_D U) is something like: +;; (∀ (P : (∀ a -> ... -> (D a ...) -> U)) +;; (method_ci ...) -> ... -> +;; (a -> ... -> (D a ...) -> +;; (P a ... (D a ...)))) +;; +;; x_D is an inductively defined type +;; U is the sort the motive +;; x_P is the name of the motive +;; Ξ_P*D is the telescope of the parameters of x_D and +;; the witness of type x_D (applied to the parameters) +;; Ξ_m is the telescope of the methods for x_D +(define-metafunction tt-ctxtL + Δ-elim-type : Δ x U -> t + [(Δ-elim-type Δ x_D U) + (Π (x_P : (in-hole Ξ_P*D U)) + ;; The methods Ξ_m for each constructor of type x_D + (in-hole Ξ_m + ;; And finally, the parameters and discriminant + (in-hole Ξ_P*D + ;; The result is (P a ... (x_D a ...)), i.e., the motive + ;; applied to the paramters and discriminant + (Ξ-apply Ξ_P*D x_P)))) + ;; Get the parameters of x_D + (where Ξ (Δ-ref-parameter-Ξ Δ x_D)) + ;; A fresh name to bind the discriminant + (where x ,(variable-not-in (term (Δ Γ x_D Ξ)) 'x-D)) + ;; The telescope (∀ a -> ... -> (D a ...) hole), i.e., + ;; of the parameters and the inductive type applied to the + ;; parameters + (where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ x_D)) hole))) + ;; A fresh name for the motive + (where x_P ,(variable-not-in (term (Δ Γ x_D Ξ Ξ_P*D x)) 'x-P)) + ;; The types of the methods for this inductive. + (where Ξ_m (Δ-methods-telescope Δ x_D x_P))]) + +;; TODO: This might belong in the next section, since it's related to evaluation +;; Generate recursive applications of the eliminator for each inductive argument of type x_D. +;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor +;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i, +;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i) +(define-metafunction tt-ctxtL + Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ + [(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (in-hole Θ_i (hole (name t_i (in-hole Θ_r x_ci))))) + ((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i) + (in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P))) + (side-condition (memq (term x_ci) (term (Δ-ref-constructors Δ x_D))))] + [(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_nr) hole]) + +;;; ------------------------------------------------------------------------ +;;; Dynamic semantics +;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the +;;; inductively defined type x with a motive whose result is in universe U + +(define-extended-language tt-redL tt-ctxtL + ;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However, + ;; determining whether or not it is partially applied cannot be done with the grammar alone. + (v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U))) + (Θv ::= hole (Θv v)) + ;; call-by-value, plus reduce under Π (helps with typing checking) + (E ::= hole (E e) (v E) (Π (x : v) E) (Π (x : E) e))) + +(define Θv? (redex-match? tt-redL Θv)) +(define E? (redex-match? tt-redL E)) +(define v? (redex-match? tt-redL v)) + +(define tt--> + (reduction-relation tt-redL + (--> (Δ (in-hole E ((λ (x : t_0) t_1) t_2))) + (Δ (in-hole E (subst t_1 x t_2))) + -->β) + (--> (Δ (in-hole E (in-hole Θv ((elim x_D U) v_P)))) + (Δ (in-hole E (in-hole Θ_r (in-hole Θv_i v_mi)))) + #| + | The elim form must appear applied like so: + | (elim x_D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...)) + | + | Where: + | x_D is the inductive being eliminated + | U is the universe of the result of the motive + | v_P is the motive + | m_{0..n} are the methods + | p ... are the parameters of x_D + | c_i is a constructor of x_d + | a ... are the arguments to c_i + | Unfortunately, Θ contexts turn all this inside out: + | TODO: Write better abstractions for this notation + |# + ;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and + ;; the discriminant: the constructor x_ci applied to its argument Θv_i + (where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv) + ;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other + ;; arguments. + (side-condition (equal? (term (Θ-length Θv_p)) (term (Ξ-length (Δ-ref-parameter-Ξ Δ x_D))))) + ;; Ensure x_ci is actually a constructor for x_D + (where (x_c* ...) (Δ-ref-constructors Δ x_D)) + (side-condition (memq (term x_ci) (term (x_c* ...)))) + ;; There should be a number of methods equal to the number of constructors; to ensure E + ;; doesn't capture methods and Θv_m doesn't capture other arguments + (side-condition (equal? (length (term (x_c* ...))) (term (Θ-length Θv_m)))) + ;; Find the method for constructor x_ci, relying on the order of the arguments. + (where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ x_D x_ci))) + ;; Generate the inductive recursion + (where Θ_r (Δ-inductive-elim Δ x_D U v_P Θv_p Θv_m Θv_i)) + -->elim))) + +(define-metafunction tt-redL + step : Δ e -> e + [(step Δ e) + e_r + (where (_ e_r) ,(car (apply-reduction-relation tt--> (term (Δ e)))))]) + +(define-metafunction tt-redL + reduce : Δ e -> e + [(reduce Δ e) + e_r + (where (_ e_r) + ,(let ([r (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)]) + ;; Efficient check for (= (length r) 1) + ;; NB: Check is overly aggressive and produces wrong error, + ;; because not reducing under lambda. + #;(unless (null? (cdr r)) + (error "Church-Rosser broken" r)) + (car r)))]) + +(define-judgment-form tt-redL + #:mode (equivalent I I I) + #:contract (equivalent Δ t t) + + [(where t_2 (reduce Δ t_0)) + (where t_3 (reduce Δ t_1)) + (side-condition (α-equivalent? t_2 t_3)) + ----------------- "≡-αβ" + (equivalent Δ t_0 t_1)]) + +;;; ------------------------------------------------------------------------ +;;; Type checking and synthesis + +(define-extended-language tt-typingL tt-redL + ;; NB: There may be a bijection between Γ and Ξ. That's interesting. + ;; NB: Also a bijection between Γ and a list of maps from x to t. + (Γ ::= ∅ (Γ x : t))) +(define Γ? (redex-match? tt-typingL Γ)) + +(define-metafunction tt-typingL + Γ-union : Γ Γ -> Γ + [(Γ-union Γ ∅) Γ] + [(Γ-union Γ_2 (Γ_1 x : t)) + ((Γ-union Γ_2 Γ_1) x : t)]) + +(define-metafunction tt-typingL + Γ-set : Γ x t -> Γ + [(Γ-set Γ x t) (Γ x : t)]) + +;; NB: Depends on clause order +(define-metafunction tt-typingL + Γ-ref : Γ x -> t or #f + [(Γ-ref ∅ x) #f] + [(Γ-ref (Γ x : t) x) t] + [(Γ-ref (Γ x_0 : t_0) x_1) (Γ-ref Γ x_1)]) + +;; NB: Depends on clause order +(define-metafunction tt-typingL + Γ-remove : Γ x -> Γ + [(Γ-remove ∅ x) ∅] + [(Γ-remove (Γ x : t) x) Γ] + [(Γ-remove (Γ x_0 : t_0) x_1) (Γ-remove Γ x_1)]) + +(define-metafunction tt-typingL + nonpositive : x t -> #t or #f + [(nonpositive x (in-hole Θ x)) + #t] + [(nonpositive x (Π (x_0 : (in-hole Θ x)) t)) + #f] + [(nonpositive x (Π (x_0 : t_0) t)) + ,(and (term (positive x t_0)) (term (nonpositive x t)))] + [(nonpositive x t) #t]) + +(define-metafunction tt-typingL + positive : x t -> #t or #f + [(positive x (in-hole Θ x)) + #f] + [(positive x (Π (x_0 : (in-hole Θ x)) t)) + (positive x t)] + [(positive x (Π (x_0 : t_0) t)) + ,(and (term (nonpositive x t_0)) (term (positive x t)))] + [(positive x t) #t]) + +(define-metafunction tt-typingL + positive* : x (t ...) -> #t or #f + [(positive* x_D ()) #t] + [(positive* x_D (t_c t_rest ...)) + ;; Replace the result of the constructor with (Unv 0), to avoid the result being considered a + ;; nonpositive position. + ,(and (term (positive x_D (in-hole Ξ (Unv 0)))) (term (positive* x_D (t_rest ...)))) + (where (in-hole Ξ (in-hole Θ x_D)) t_c)]) + +;; Holds when the signature Δ and typing context Γ are well-formed. +(define-judgment-form tt-typingL + #:mode (wf I I) + #:contract (wf Δ Γ) + + [----------------- "WF-Empty" + (wf ∅ ∅)] + + [(type-infer Δ Γ t t_0) + (wf Δ Γ) + ----------------- "WF-Var" + (wf Δ (Γ x : t))] + + [(wf Δ ∅) + (type-infer Δ ∅ t_D U_D) + (type-infer Δ (∅ x_D : t_D) t_c U_c) ... + ;; NB: Ugh this should be possible with pattern matching alone .... + (side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...)))) + (side-condition (positive* x_D (t_c ...))) + ----------------- "WF-Inductive" + (wf (Δ (x_D : t_D + ;; Checks that a constructor for x actually produces an x, i.e., that + ;; the constructor is well-formed. + ((x_c : (name t_c (in-hole Ξ (in-hole Θ x_D*)))) ...))) ∅)]) + +;; TODO: Bi-directional and inference? +;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf + +;; Holds when e has type t under signature Δ and typing context Γ +(define-judgment-form tt-typingL + #:mode (type-infer I I I O) + #:contract (type-infer Δ Γ e t) + + [(wf Δ Γ) + (unv-type U_0 U_1) + ----------------- "DTR-Unv" + (type-infer Δ Γ U_0 U_1)] + + [(where t (Δ-ref-type Δ x)) + ----------------- "DTR-Inductive" + (type-infer Δ Γ x t)] + + [(where t (Γ-ref Γ x)) + ----------------- "DTR-Start" + (type-infer Δ Γ x t)] + + [(type-infer Δ (Γ x : t_0) e t_1) + (type-infer Δ Γ (Π (x : t_0) t_1) U) + ----------------- "DTR-Abstraction" + (type-infer Δ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))] + + [(type-infer Δ Γ t_0 U_1) + (type-infer Δ (Γ x : t_0) t U_2) + (unv-pred U_1 U_2 U) + ----------------- "DTR-Product" + (type-infer Δ Γ (Π (x : t_0) t) U)] + + [(type-infer Δ Γ e_0 t) + ;; Cannot rely on type-infer producing normal forms. + (where (Π (x_0 : t_0) t_1) (reduce Δ t)) + (type-check Δ Γ e_1 t_0) + (where t_3 (subst t_1 x_0 e_1)) + ----------------- "DTR-Application" + (type-infer Δ Γ (e_0 e_1) t_3)] + + [(where t (Δ-elim-type Δ D U)) + (type-infer Δ Γ t U_e) + ----------------- "DTR-Elim_D" + (type-infer Δ Γ (elim D U) t)]) + +(define-judgment-form tt-typingL + #:mode (type-check I I I I) + #:contract (type-check Δ Γ e t) + + [(type-infer Δ Γ e t_0) + (equivalent Δ t t_0) + ----------------- "DTR-Check" + (type-check Δ Γ e t)]) diff --git a/curnel/redex-lang.rkt b/cur-lib/cur/curnel/redex-lang.rkt similarity index 100% rename from curnel/redex-lang.rkt rename to cur-lib/cur/curnel/redex-lang.rkt diff --git a/lang/reader.rkt b/cur-lib/cur/lang/reader.rkt similarity index 100% rename from lang/reader.rkt rename to cur-lib/cur/lang/reader.rkt diff --git a/oll.rkt b/cur-lib/cur/oll.rkt similarity index 80% rename from oll.rkt rename to cur-lib/cur/oll.rkt index 1618cc4..acd8453 100644 --- a/oll.rkt +++ b/cur-lib/cur/oll.rkt @@ -12,7 +12,15 @@ Var avar var-equal? - generate-coq) + generate-coq + + ;; private; exported for testing only + (for-syntax + coq-defns + output-latex-bnf + output-coq + new-name + fresh-name)) (begin-for-syntax (define-syntax-class dash @@ -86,27 +94,6 @@ (define (fresh-name id) (datum->syntax id (gensym (syntax->datum id))))) -(module+ test - (begin-for-syntax - (require rackunit) - (define (check-id-equal? v1 v2) - (check-equal? - (syntax->datum v1) - (syntax->datum v2))) - (define (check-id-match? v1 v2) - (check-regexp-match - v1 - (symbol->string (syntax->datum v2)))) - (check-id-match? - #px"term\\d+" - (fresh-name #'term)) - (check-id-equal? - #'stlc-lambda - (new-name #'stlc #'lambda)) - (check-id-match? - #px"stlc-term\\d+" - (new-name #'stlc (fresh-name #'term))))) - ;; TODO: Oh, this is a mess. Rewrite it. (begin-for-syntax (define lang-name (make-parameter #'name)) @@ -196,20 +183,7 @@ (with-output-to-file file-name (thunk (printf (output-latex-bnf vars clauses))) #:exists 'append))) -(module+ test - (require "stdlib/sugar.rkt") - (begin-for-syntax - (require rackunit) - (check-equal? - (format "$$\\begin{array}{lrrl}~n~a~n\\end{array}$$" - (format "\\mbox{\\textit{term}} & e & \\bnfdef & (e1 e2) \\bnfalt (lambda (x) e)\\\\~n")) - (output-latex-bnf #'(x) - #'((term (e) ::= (e1 e2) (lambda (x) e))))) - (check-equal? - (format "$$\\begin{array}{lrrl}~n~a~n\\end{array}$$" - (format "\\mbox{\\textit{type}} & A,B,C & \\bnfdef & unit \\bnfalt (* A B) \\bnfalt (+ A C)\\\\~n")) - (output-latex-bnf #'(x) - #'((type (A B C) ::= unit (* A B) (+ A C))))))) + ;; TODO: For better error messages, add context, rename some of these patterns. e.g. ;; (type (meta-vars) ::= ?? ) ;; TODO: Extend define-language with syntax such as .... @@ -243,14 +217,6 @@ (match v2 [(avar (n2 : Nat)) (nat-equal? n1 n2)])])) -(module+ test - (require rackunit) - (check-equal? - (var-equal? (avar z) (avar z)) - true) - (check-equal? - (var-equal? (avar z) (avar (s z))) - false)) ;; See stlc.rkt for examples @@ -346,41 +312,3 @@ (format "Eval compute in ~a." body)))) (displayln (format "~a~a" (coq-defns) output)) #'(begin))])) - -(module+ test - (begin-for-syntax - (check-equal? - (parameterize ([coq-defns ""]) (output-coq #'(data nat : Type (z : nat))) (coq-defns)) - (format "Inductive nat : Type :=~n| z : nat.~n")) - (check-regexp-match - "(forall .+ : Type, Type)" - (output-coq #'(-> Type Type))) - (let ([t (parameterize ([coq-defns ""]) - (output-coq #'(define-relation (meow gamma term type) - [(g : gamma) (e : term) (t : type) - --------------- T-Bla - (meow g e t)])) - (coq-defns))]) - (check-regexp-match - "Inductive meow : \\(forall .+ : gamma, \\(forall .+ : term, \\(forall .+ : type, Type\\)\\)\\) :=" - (first (string-split t "\n"))) - (check-regexp-match - "\\| T-Bla : \\(forall g : gamma, \\(forall e : term, \\(forall t : type, \\(\\(\\(meow g\\) e\\) t\\)\\)\\)\\)\\." - (second (string-split t "\n")))) - (let ([t (output-coq #'(elim nat Type (lambda (x : nat) nat) z - (lambda* (x : nat) (ih-x : nat) ih-x) - e))]) - (check-regexp-match - "\\(\\(\\(\\(nat_rect \\(fun x : nat => nat\\)\\) z\\) \\(fun x : nat => \\(fun ih_x : nat => ih_x\\)\\)\\) e\\)" - t)) - (check-regexp-match - "Definition thm_plus_commutes := \\(forall n : nat, \\(forall m : nat, \\(\\(\\(== nat\\) \\(\\(plus n\\) m\\)\\) \\(\\(plus m\\) n\\)\\)\\)\\).\n" - (parameterize ([coq-defns ""]) - (output-coq #'(define thm:plus-commutes (forall* (n : nat) (m : nat) - (== nat (plus n m) (plus m n))))) - (coq-defns))) - (check-regexp-match - "Function add1 \\(n : nat\\) := \\(s n\\).\n" - (parameterize ([coq-defns ""]) - (output-coq #'(define (add1 (n : nat)) (s n))) - (coq-defns))))) diff --git a/cur-lib/cur/stdlib/bool.rkt b/cur-lib/cur/stdlib/bool.rkt new file mode 100644 index 0000000..df131b2 --- /dev/null +++ b/cur-lib/cur/stdlib/bool.rkt @@ -0,0 +1,24 @@ +#lang s-exp "../cur.rkt" +(require "sugar.rkt") +(provide Bool true false if not and or) + +(data Bool : Type + (true : Bool) + (false : Bool)) + +(define-syntax-rule (if t s f) + (match t + [true s] + [false f])) + +(define (not (x : Bool)) (if x false true)) + +(define (and (x : Bool) (y : Bool)) + (if x + y + (not y))) + +(define (or (x : Bool) (y : Bool)) + (if x + true + y)) diff --git a/cur-lib/cur/stdlib/maybe.rkt b/cur-lib/cur/stdlib/maybe.rkt new file mode 100644 index 0000000..6ebe99b --- /dev/null +++ b/cur-lib/cur/stdlib/maybe.rkt @@ -0,0 +1,13 @@ +#lang s-exp "../cur.rkt" +(require "sugar.rkt") +(provide Maybe none some some/i) + +(data Maybe : (forall (A : Type) Type) + (none : (forall (A : Type) (Maybe A))) + (some : (forall* (A : Type) (a : A) (Maybe A)))) + +(define-syntax (some/i syn) + (syntax-case syn () + [(_ a) + (let ([a-ty (type-infer/syn #'a)]) + #`(some #,a-ty a))])) diff --git a/stdlib/nat.rkt b/cur-lib/cur/stdlib/nat.rkt similarity index 55% rename from stdlib/nat.rkt rename to cur-lib/cur/stdlib/nat.rkt index 871c39a..435cc8c 100644 --- a/stdlib/nat.rkt +++ b/cur-lib/cur/stdlib/nat.rkt @@ -3,55 +3,37 @@ ;; TODO: override (all-defined-out) to enable exporting all these ;; properly. (provide Nat z s add1 sub1 plus mult exp square nat-equal? even? odd?) -(module+ test - (require rackunit)) (data Nat : Type (z : Nat) (s : (-> Nat Nat))) (define (add1 (n : Nat)) (s n)) -(module+ test - (check-equal? (add1 (s z)) (s (s z)))) (define (sub1 (n : Nat)) (match n [z z] [(s (x : Nat)) x])) -(module+ test - (check-equal? (sub1 (s z)) z)) (define (plus (n1 : Nat) (n2 : Nat)) (match n1 [z n2] [(s (x : Nat)) (s (recur x))])) -(module+ test - (check-equal? (plus z z) z) - (check-equal? (plus (s (s z)) (s (s z))) (s (s (s (s z)))))) (define (mult (m : Nat) (n : Nat)) (match m [z z] [(s (x : Nat)) (plus n (recur x))])) -(module+ test - (check-equal? (mult (s (s z)) z) z) - (check-equal? (mult (s (s z)) (s z)) (s (s z)))) (define (exp (m : Nat) (e : Nat)) (match m [z (s z)] [(s (x : Nat)) (mult e (recur x))])) -(module+ test - #;(check-equal? (exp z z) (s z)) - #;(check-equal? (exp (s z) z) z)) (define square (run (exp (s (s z))))) -;; TODO: This test takes too long t run -#;(module+ test - (check-equal? (square (s (s z))) (s (s (s (s z)))))) ;; Credit to this function goes to Max (define nat-equal? @@ -64,10 +46,6 @@ false (lambda* (x : Nat) (ih-bla : Bool) (ih x)))))) -(module+ test - (check-equal? (nat-equal? z z) true) - (check-equal? (nat-equal? z (s z)) false) - (check-equal? (nat-equal? (s z) (s z)) true)) (define (even? (n : Nat)) (match n @@ -77,26 +55,3 @@ (define (odd? (n : Nat)) (not (even? n))) - -(module+ test - (check-equal? - (even? z) - true) - (check-equal? - (even? (s z)) - false) - (check-equal? - (even? (s (s z))) - true) - (check-equal? - (odd? z) - false) - (check-equal? - (odd? (s z)) - true) - (check-equal? - (odd? (s (s z))) - false) - #;(check-equal? - (odd? (s (s (s z)))) - true)) diff --git a/stdlib/prop.rkt b/cur-lib/cur/stdlib/prop.rkt similarity index 75% rename from stdlib/prop.rkt rename to cur-lib/cur/stdlib/prop.rkt index 81e05a6..ad4371a 100644 --- a/stdlib/prop.rkt +++ b/cur-lib/cur/stdlib/prop.rkt @@ -15,17 +15,11 @@ thm:proj2 pf:proj2 == refl) -(module+ test - (require rackunit)) - (data True : Type (T : True)) (define thm:anything-implies-true (forall (P : Type) True)) (define pf:anything-implies-true (lambda (P : Type) T)) -(module+ test - (:: pf:anything-implies-true thm:anything-implies-true)) - (data False : Type) (define-type (Not (A : Type)) (-> A False)) @@ -51,9 +45,6 @@ (And Q P)) ((conj (P : Type) (Q : Type) (x : P) (y : Q)) IH: () (conj/i y x))))) -(module+ test - (:: pf:and-is-symmetric thm:and-is-symmetric)) - (define thm:proj1 (forall* (A : Type) (B : Type) (c : (And A B)) A)) @@ -63,9 +54,6 @@ (lambda* (A : Type) (B : Type) (c : (And A B)) A) ((conj (A : Type) (B : Type) (a : A) (b : B)) IH: () a)))) -(module+ test - (:: pf:proj1 thm:proj1)) - (define thm:proj2 (forall* (A : Type) (B : Type) (c : (And A B)) B)) @@ -75,9 +63,6 @@ (lambda* (A : Type) (B : Type) (c : (And A B)) B) ((conj (A : Type) (B : Type) (a : A) (b : B)) IH: () b)))) -(module+ test - (:: pf:proj2 thm:proj2)) - #| TODO: Disabled until #22 fixed (data Or : (forall* (A : Type) (B : Type) Type) (left : (forall* (A : Type) (B : Type) (a : A) (Or A B))) @@ -100,30 +85,3 @@ (data == : (forall* (A : Type) (x : A) (-> A Type)) (refl : (forall* (A : Type) (x : A) (== A x x)))) - -(module+ test - (require "bool.rkt" "nat.rkt") - (check-equal? - (elim == Type (λ* (A : Type) (x : A) (y : A) (p : (== A x y)) Nat) - (λ* (A : Type) (x : A) z) - Bool - true - true - (refl Bool true)) - z) - - (check-equal? - (conj/i (conj/i T T) T) - (conj (And True True) True (conj True True T T) T)) - - (define (id (A : Type) (x : A)) x) - - (check-equal? - ((id (== True T T)) - (refl True (run (id True T)))) - (refl True T)) - - (check-equal? - ((id (== True T T)) - (refl True (id True T))) - (refl True T))) diff --git a/stdlib/sugar.rkt b/cur-lib/cur/stdlib/sugar.rkt similarity index 87% rename from stdlib/sugar.rkt rename to cur-lib/cur/stdlib/sugar.rkt index 6f8eeaa..3e41b8c 100644 --- a/stdlib/sugar.rkt +++ b/cur-lib/cur/stdlib/sugar.rkt @@ -249,53 +249,3 @@ (printf "\"~a\" has type \"~a\"~n" (syntax->datum #'term) (syntax->datum (type-infer/syn #'term))) ;; Void is undocumented and a hack, but sort of works #'(void))])) - -(module+ test - (require rackunit (submod "..")) - - (check-equal? - ((λ* (x : (Type 1)) (y : (∀* (x : (Type 1)) (Type 1))) (y x)) - Type - (λ (x : (Type 1)) x)) - Type) - - (check-equal? - ((λ* (x : (Type 1)) (y : (→* (Type 1) (Type 1))) (y x)) - Type - (λ (x : (Type 1)) x)) - Type) - - (check-equal? - ((λ* (x : (Type 1)) (y : (→ (Type 1) (Type 1))) (y x)) - Type - (λ (x : (Type 1)) x)) - Type) - - (check-equal? - (let ([x Type] - [y (λ (x : (Type 1)) x)]) - (y x)) - Type) - - (check-equal? - (let ([(x : (Type 1)) Type] - [y (λ (x : (Type 1)) x)]) - (y x)) - Type) - - ;; check that raises decent syntax error - ;; Can't use this because (lambda () ...) and thunk are not things in Cur at runtime - #;(check-exn - exn:fail:syntax? - (let ([x : (Type 1) Type] - [y (λ (x : (Type 1)) x)]) - (y x))) - - ;; check that raises type error - #;(check-exn - exn:fail:syntax? - (let ([x uninferrable-expr] - [y (λ (x : (Type 1)) x)]) - (y x))) - - ) diff --git a/stdlib/tactics/base.rkt b/cur-lib/cur/stdlib/tactics/base.rkt similarity index 100% rename from stdlib/tactics/base.rkt rename to cur-lib/cur/stdlib/tactics/base.rkt diff --git a/stdlib/tactics/sartactics.rkt b/cur-lib/cur/stdlib/tactics/sartactics.rkt similarity index 96% rename from stdlib/tactics/sartactics.rkt rename to cur-lib/cur/stdlib/tactics/sartactics.rkt index 7a53e06..5243130 100644 --- a/stdlib/tactics/sartactics.rkt +++ b/cur-lib/cur/stdlib/tactics/sartactics.rkt @@ -124,11 +124,3 @@ (loop (apply (lookup-tactic #'tactic) (append (syntax->list #'(arg ...)) (list ps))) (cons cmd cmds)))])))) - -(module+ test - (require - rackunit - "../bool.rkt") - (define-theorem meow (forall (x : Bool) Bool)) - #;(proof (interactive)) - ) diff --git a/stdlib/tactics/standard.rkt b/cur-lib/cur/stdlib/tactics/standard.rkt similarity index 82% rename from stdlib/tactics/standard.rkt rename to cur-lib/cur/stdlib/tactics/standard.rkt index d2b83df..0c1831b 100644 --- a/stdlib/tactics/standard.rkt +++ b/cur-lib/cur/stdlib/tactics/standard.rkt @@ -98,31 +98,3 @@ ;; Open interactive REPL for tactic DSL; exit with QED command, which ;; returns a QED script ;(define-syntax interactive-proof) - -(module+ test - (require - rackunit - "../bool.rkt") - (define-theorem meow (forall (x : Bool) Bool)) - (proof - (intro x) - (by-assumption)) - (define-theorem meow1 (forall (x : Bool) Bool)) - (proof - (obvious) - ;; TODO: Add ability to check output - #;(print)) - (define-theorem meow2 (forall (x : Bool) Bool)) - (proof - (intro x) - (restart) - (intro x) - (by-assumption)) - (define-theorem meow3 (forall (x : Bool) Bool)) - (proof (obvious)) - ;; TODO: Fix this unit test so it doesn't require interaction - (define-theorem meow4 (forall (x : Bool) Bool)) - #;(proof (interactive)) - ;; TODO: Add check-cur-equal? for unit testing? - #;(check-pred (curry cur-equal? '(lambda (x : bool) x))) - ) diff --git a/stdlib/typeclass.rkt b/cur-lib/cur/stdlib/typeclass.rkt similarity index 85% rename from stdlib/typeclass.rkt rename to cur-lib/cur/stdlib/typeclass.rkt index bc41256..8ce6373 100644 --- a/stdlib/typeclass.rkt +++ b/cur-lib/cur/stdlib/typeclass.rkt @@ -71,27 +71,3 @@ #'body)) #`(define #,(format-id syn "~a-~a" name #'param) #,body))))])) - -(module+ test - (require rackunit) - (typeclass (Eqv (A : Type)) - (equal? : (forall* (a : A) (b : A) Bool))) - (impl (Eqv Bool) - (define (equal? (a : Bool) (b : Bool)) - (if a - (if b true false) - (if b false true)))) - (impl (Eqv Nat) - (define equal? nat-equal?)) - (check-equal? - (equal? z z) - true) - (check-equal? - (equal? z (s z)) - false) - (check-equal? - (equal? true false) - false) - (check-equal? - (equal? true true) - true)) diff --git a/cur-lib/info.rkt b/cur-lib/info.rkt new file mode 100644 index 0000000..fc2d01e --- /dev/null +++ b/cur-lib/info.rkt @@ -0,0 +1,7 @@ +#lang info +(define collection 'multi) +(define deps '("base" ("redex-lib" #:version "1.11"))) +(define build-deps '()) +(define pkg-desc "implementation (no documentation, tests) part of \"cur\".") +(define version "0.2") +(define pkg-authors '(wilbowma)) diff --git a/cur-test/cur/tests/oll.rkt b/cur-test/cur/tests/oll.rkt new file mode 100644 index 0000000..04188eb --- /dev/null +++ b/cur-test/cur/tests/oll.rkt @@ -0,0 +1,85 @@ +#lang cur + +;; NB TODO: raco test reports incorrect number of total tests due to +;; beign-for-syntax; but all failing tests correctly raise errors + +(require + rackunit + cur/stdlib/sugar + cur/oll) + +(begin-for-syntax + (require rackunit) + (define (check-id-equal? v1 v2) + (check-equal? + (syntax->datum v1) + (syntax->datum v2))) + (define (check-id-match? v1 v2) + (check-regexp-match + v1 + (symbol->string (syntax->datum v2)))) + (check-id-match? + #px"term\\d+" + (fresh-name #'term)) + (check-id-equal? + #'stlc-lambda + (new-name #'stlc #'lambda)) + (check-id-match? + #px"stlc-term\\d+" + (new-name #'stlc (fresh-name #'term)))) + +(begin-for-syntax + (check-equal? + (format "$$\\begin{array}{lrrl}~n~a~n\\end{array}$$" + (format "\\mbox{\\textit{term}} & e & \\bnfdef & (e1 e2) \\bnfalt (lambda (x) e)\\\\~n")) + (output-latex-bnf #'(x) + #'((term (e) ::= (e1 e2) (lambda (x) e))))) + (check-equal? + (format "$$\\begin{array}{lrrl}~n~a~n\\end{array}$$" + (format "\\mbox{\\textit{type}} & A,B,C & \\bnfdef & unit \\bnfalt (* A B) \\bnfalt (+ A C)\\\\~n")) + (output-latex-bnf #'(x) + #'((type (A B C) ::= unit (* A B) (+ A C)))))) + +(check-equal? + (var-equal? (avar z) (avar z)) + true) +(check-equal? + (var-equal? (avar z) (avar (s z))) + false) + +(begin-for-syntax + (check-equal? + (parameterize ([coq-defns ""]) (output-coq #'(data nat : Type (z : nat))) (coq-defns)) + (format "Inductive nat : Type :=~n| z : nat.~n")) + (check-regexp-match + "(forall .+ : Type, Type)" + (output-coq #'(-> Type Type))) + (let ([t (parameterize ([coq-defns ""]) + (output-coq #'(define-relation (meow gamma term type) + [(g : gamma) (e : term) (t : type) + --------------- T-Bla + (meow g e t)])) + (coq-defns))]) + (check-regexp-match + "Inductive meow : \\(forall .+ : gamma, \\(forall .+ : term, \\(forall .+ : type, Type\\)\\)\\) :=" + (first (string-split t "\n"))) + (check-regexp-match + "\\| T-Bla : \\(forall g : gamma, \\(forall e : term, \\(forall t : type, \\(\\(\\(meow g\\) e\\) t\\)\\)\\)\\)\\." + (second (string-split t "\n")))) + (let ([t (output-coq #'(elim nat Type (lambda (x : nat) nat) z + (lambda* (x : nat) (ih-x : nat) ih-x) + e))]) + (check-regexp-match + "\\(\\(\\(\\(nat_rect \\(fun x : nat => nat\\)\\) z\\) \\(fun x : nat => \\(fun ih_x : nat => ih_x\\)\\)\\) e\\)" + t)) + (check-regexp-match + "Definition thm_plus_commutes := \\(forall n : nat, \\(forall m : nat, \\(\\(\\(== nat\\) \\(\\(plus n\\) m\\)\\) \\(\\(plus m\\) n\\)\\)\\)\\).\n" + (parameterize ([coq-defns ""]) + (output-coq #'(define thm:plus-commutes (forall* (n : nat) (m : nat) + (== nat (plus n m) (plus m n))))) + (coq-defns))) + (check-regexp-match + "Function add1 \\(n : nat\\) := \\(s n\\).\n" + (parameterize ([coq-defns ""]) + (output-coq #'(define (add1 (n : nat)) (s n))) + (coq-defns)))) diff --git a/cur-test/cur/tests/redex-core.rkt b/cur-test/cur/tests/redex-core.rkt new file mode 100644 index 0000000..eb2da16 --- /dev/null +++ b/cur-test/cur/tests/redex-core.rkt @@ -0,0 +1,658 @@ +#lang racket/base +(require + redex/reduction-semantics + cur/curnel/redex-core + rackunit + racket/function + (only-in racket/set set=?)) +(define-syntax-rule (check-holds (e ...)) + (check-true + (judgment-holds (e ...)))) +(define-syntax-rule (check-not-holds (e ...)) + (check-false + (judgment-holds (e ...)))) +(define-syntax-rule (check-equiv? e1 e2) + (check (default-equiv) e1 e2)) +(define-syntax-rule (check-not-equiv? e1 e2) + (check (compose not (default-equiv)) e1 e2)) + +(default-equiv (lambda (x y) (term (α-equivalent? ,x ,y)))) + +;; Syntax tests +;; ------------------------------------------------------------------------ + +(define-term Type (Unv 0)) +(check-true (x? (term T))) +(check-true (x? (term A))) +(check-true (x? (term truth))) +(check-true (x? (term zero))) +(check-true (x? (term s))) +(check-true (t? (term zero))) +(check-true (t? (term s))) +(check-true (x? (term nat))) +(check-true (t? (term nat))) +(check-true (t? (term A))) +(check-true (t? (term S))) +(check-true (U? (term (Unv 0)))) +(check-true (U? (term Type))) +(check-true (e? (term (λ (x_0 : (Unv 0)) x_0)))) +(check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))) +(check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))) + +;; TODO: Rename these signatures, and use them in all future tests. +(define Δ (term ((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat))))) + (bool : (Unv 0) ((true : bool) (false : bool)))))) +(define Δ0 (term ∅)) +(define Δ3 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ())))) +(define Δ4 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) + ((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))))) +(check-true (Δ? Δ0)) +(check-true (Δ? Δ)) +(check-true (Δ? Δ4)) +(check-true (Δ? Δ3)) +(check-true (Δ? Δ4)) +(define sigma (term ((((((∅ (true : (Unv 0) ((T : true)))) + (false : (Unv 0) ())) + (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) + ())) + (nat : (Unv 0) ())) + (heap : (Unv 0) ())) + (pre : (Π (temp808 : heap) (Unv 0)) ())))) +(check-true (Δ? (term (∅ (true : (Unv 0) ((T : true))))))) +(check-true (Δ? (term (∅ (false : (Unv 0) ()))))) +(check-true (Δ? (term (∅ (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) + ()))))) +(check-true (Δ? (term (∅ (nat : (Unv 0) ()))))) +(check-true (Δ? (term (∅ (pre : (Π (temp808 : heap) (Unv 0)) ()))))) + +(check-true (Δ? (term ((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))))) +(check-true (Δ? (term (((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())) + (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) + ()))))) +(check-true (Δ? sigma)) +(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B)))))) + + +;; α-equiv and subst tests +;; ------------------------------------------------------------------------ +(check-true + (term + (α-equivalent? + (Π (a : S) (Π (b : B) ((and S) B))) + (subst (Π (a : A) (Π (b : B) ((and A) B))) A S)))) + +;; Various accessor tests +;; ------------------------------------------------------------------------ + +(check-equal? + (term (Δ-key-by-constructor ,Δ zero)) + (term nat)) +(check-equal? + (term (Δ-key-by-constructor ,Δ s)) + (term nat)) + +(check-equal? + (term (Δ-ref-constructor-map ,Δ nat)) + (term ((zero : nat) (s : (Π (x : nat) nat))))) +(check-equal? + (term (Δ-ref-constructor-map ,sigma false)) + (term ())) + +;; Telescope tests +;; ------------------------------------------------------------------------ +;; Are these telescopes the same when filled with alpha-equivalent, and equivalently renamed, termed +(define (telescope-equiv x y) + (alpha-equivalent? ttL (term (in-hole ,x (Unv 0))) (term (in-hole ,y (Unv 0))))) +(define-syntax-rule (check-telescope-equiv? e1 e2) + (check telescope-equiv e1 e2)) +(define-syntax-rule (check-telescope-not-equiv? e1 e2) + (check (compose not telescope-equiv) e1 e2)) + +(check-telescope-equiv? + (term (Δ-ref-parameter-Ξ ,Δ nat)) + (term hole)) +(check-telescope-equiv? + (term (Δ-ref-parameter-Ξ ,Δ4 and)) + (term (Π (A : Type) (Π (B : Type) hole)))) + +(check-telescope-equiv? + (term (Ξ-compose + (Π (x : t_0) (Π (y : t_1) hole)) + (Π (z : t_2) (Π (a : t_3) hole)))) + (term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole)))))) + +(check-telescope-equiv? + (term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat))) + (term (Π (m-zero : ((λ (x : nat) nat) zero)) + (Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole)))) +(check-telescope-equiv? + (term (Δ-methods-telescope ,Δ nat P)) + (term (Π (m-zero : (P zero)) + (Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x))))) + hole)))) +(check-telescope-equiv? + (term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat))) + (term (Π (m-zero : ((λ (x : nat) nat) zero)) + (Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) + hole)))) +(check-telescope-equiv? + (term (Δ-methods-telescope ,Δ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))))) + (term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) + ((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))) + A) + B) + ((((conj A) B) a) b))))))) + hole))) +(check-true (x? (term false))) +(check-true (Ξ? (term hole))) +(check-true (t? (term (λ (y : false) (Π (x : Type) x))))) +(check-true (redex-match? ttL ((x : t) ...) (term ()))) +(check-telescope-equiv? + (term (Δ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x)))) + (term hole)) + +;; Tests for inductive elimination +;; ------------------------------------------------------------------------ +;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction. +(check-true + (redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero)))) +(check-telescope-equiv? + (term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole + ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + (hole zero))) + (term (hole (((((elim nat Type) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + zero)))) +(check-telescope-equiv? + (term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole + ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + (hole (s zero)))) + (term (hole (((((elim nat Type) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + (s zero))))) + +;; Tests for dynamic semantics +;; ------------------------------------------------------------------------ + +(check-true (v? (term (λ (x_0 : (Unv 0)) x_0)))) +(check-true (v? (term (refl Nat)))) +(check-true (v? (term ((refl Nat) z)))) + +;; TODO: Move equivalence up here, and use in these tests. +(check-equiv? (term (reduce ∅ (Unv 0))) (term (Unv 0))) +(check-equiv? (term (reduce ∅ ((λ (x : t) x) (Unv 0)))) (term (Unv 0))) +(check-not-equiv? (term (reduce ∅ ((Π (x : t) x) (Unv 0)))) (term (Unv 0))) +(check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0))))) + (term (Π (x : t) (Unv 0)))) +(check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x)))) + (term (Π (x : t) (x x)))) +(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) + (s (s x))))) + zero))) + (term (s zero))) +(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) + (s (s x))))) + (s zero)))) + (term (s (s zero)))) +(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + (s (s (s zero)))))) + (term (s (s (s (s zero)))))) + +(check-equiv? + (term (reduce ,Δ + (((((elim nat Type) (λ (x : nat) nat)) + (s (s zero))) + (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) + (s (s zero))))) + (term (s (s (s (s zero)))))) +(check-equiv? + (term (step ,Δ + (((((elim nat Type) (λ (x : nat) nat)) + (s (s zero))) + (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) + (s (s zero))))) + (term + (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) + (s zero)) + (((((elim nat Type) (λ (x : nat) nat)) + (s (s zero))) + (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) + (s zero))))) +(check-equiv? + (term (step ,Δ (step ,Δ + (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) + (s zero)) + (((((elim nat Type) (λ (x : nat) nat)) + (s (s zero))) + (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) + (s zero)))))) + (term + ((λ (ih-x1 : nat) (s ih-x1)) + (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) + zero) + (((((elim nat Type) (λ (x : nat) nat)) + (s (s zero))) + (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) + zero))))) + +(define-syntax-rule (check-equivalent e1 e2) + (check-holds (equivalent ∅ e1 e2))) +(check-equivalent + (λ (x : Type) x) (λ (y : Type) y)) +(check-equivalent + (Π (x : Type) x) (Π (y : Type) y)) + +;; Test static semantics +;; ------------------------------------------------------------------------ + +(check-true (term (positive* nat (nat)))) +(check-true (term (positive* nat ((Π (x : (Unv 0)) (Π (y : (Unv 0)) nat)))))) +(check-true (term (positive* nat ((Π (x : nat) nat))))) +;; (nat -> nat) -> nat +;; Not sure if this is actually supposed to pass +(check-false (term (positive* nat ((Π (x : (Π (y : nat) nat)) nat))))) +;; ((Unv 0) -> nat) -> nat +(check-true (term (positive* nat ((Π (x : (Π (y : (Unv 0)) nat)) nat))))) +;; (((nat -> (Unv 0)) -> nat) -> nat) +(check-true (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat))))) +;; Not sure if this is actually supposed to pass +;; ((nat -> nat) -> nat) -> nat +(check-false (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat))))) + +(check-true (judgment-holds (wf ,Δ0 ∅))) +(check-true (redex-match? tt-redL (in-hole Ξ (Unv 0)) (term (Unv 0)))) +(check-true (redex-match? tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat))) + (term (Π (x : nat) nat)))) +(define (bindings-equal? l1 l2) + (map set=? l1 l2)) +(check-pred + (curry bindings-equal? + (list (list + (make-bind 'Ξ (term (Π (x : nat) hole))) + (make-bind 'Φ (term hole)) + (make-bind 'Θ (term hole))) + (list + (make-bind 'Ξ (term hole)) + (make-bind 'Φ (term (Π (x : nat) hole))) + (make-bind 'Θ (term hole))))) + (map match-bindings (redex-match tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat))) + (term (Π (x : nat) nat))))) +(check-pred + (curry bindings-equal? + (list + (list + (make-bind 'Φ (term (Π (x : nat) hole))) + (make-bind 'Θ (term hole))))) + (map match-bindings (redex-match tt-redL (in-hole hole (in-hole Φ (in-hole Θ nat))) + (term (Π (x : nat) nat))))) + +(check-true + (redex-match? tt-redL + (in-hole hole (in-hole hole (in-hole hole nat))) + (term nat))) +(check-true + (redex-match? tt-redL + (in-hole hole (in-hole (Π (x : nat) hole) (in-hole hole nat))) + (term (Π (x : nat) nat)))) +(check-holds (wf (∅ (nat : (Unv 0) ())) ∅)) + +(check-holds (wf ,Δ0 ∅)) +(check-holds (type-infer ∅ ∅ (Unv 0) U)) +(check-holds (type-infer ∅ (∅ nat : (Unv 0)) nat U)) +(check-holds (type-infer ∅ (∅ nat : (Unv 0)) (Π (x : nat) nat) U)) +(check-true (term (positive* nat (nat (Π (x : nat) nat))))) +(check-holds + (wf (∅ (nat : (Unv 0) ((zero : nat)))) ∅)) +(check-holds + (wf (∅ (nat : (Unv 0) ((s : (Π (x : nat) nat))))) ∅)) +(check-holds (wf ,Δ ∅)) + +(check-holds (wf ,Δ3 ∅)) +(check-holds (wf ,Δ4 ∅)) +(check-holds (wf (∅ (truth : (Unv 0) ())) ∅)) +(check-holds (wf ∅ (∅ x : (Unv 0)))) +(check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : nat))) +(check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : (Π (x : nat) nat)))) + +(check-holds (type-infer ∅ ∅ (Unv 0) (Unv 1))) +(check-holds (type-infer ∅ (∅ x : (Unv 0)) (Unv 0) (Unv 1))) +(check-holds (type-infer ∅ (∅ x : (Unv 0)) x (Unv 0))) +(check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_1 : (Unv 0)) + (Π (x_3 : x_0) x_1) (Unv 0))) +(check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) x_0 U_1)) +(check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2)) +(check-holds (unv-pred (Unv 0) (Unv 0) (Unv 0))) +(check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t)) + +(check-holds (type-check ∅ ∅ (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0)))) +(check-holds (type-check ∅ ∅ (λ (y : (Unv 0)) (λ (x : y) x)) + (Π (y : (Unv 0)) (Π (x : y) y)))) + +(check-equal? (list (term (Unv 1))) + (judgment-holds + (type-infer ∅ ((∅ x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))) + U) + U)) +;; ---- Elim +;; TODO: Clean up/Reorganize these tests +(check-true + (redex-match? tt-typingL + (in-hole Θ_m (((elim x_D U) e_D) e_P)) + (term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0))))) +(define Δtruth (term (∅ (truth : (Unv 0) ((T : truth)))))) +(check-holds (type-infer ,Δtruth ∅ truth (in-hole Ξ U))) +(check-holds (type-infer ,Δtruth ∅ T (in-hole Θ_ai truth))) +(check-holds (type-infer ,Δtruth ∅ (λ (x : truth) (Unv 1)) + (in-hole Ξ (Π (x : (in-hole Θ truth)) U)))) + +(check-telescope-equiv? + (term (Δ-methods-telescope ,Δtruth truth (λ (x : truth) (Unv 1)))) + (term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole))) +(check-holds (type-infer ,Δtruth ∅ (elim truth Type) t)) +(check-holds (type-check (∅ (truth : (Unv 0) ((T : truth)))) + ∅ + ((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0)) + T) + (Unv 1))) +(check-not-holds (type-check (∅ (truth : (Unv 0) ((T : truth)))) + ∅ + ((((elim truth (Unv 1)) Type) Type) T) + (Unv 1))) +(check-holds + (type-infer ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0)) U)) +(check-holds + (type-infer ∅ (∅ x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))) + t)) +(check-holds + (type-infer ,Δ ∅ nat (in-hole Ξ U))) +(check-holds + (type-infer ,Δ ∅ zero (in-hole Θ_ai nat))) +(check-holds + (type-infer ,Δ ∅ (λ (x : nat) nat) + (in-hole Ξ (Π (x : (in-hole Θ nat)) U)))) +(define-syntax-rule (nat-test syn ...) + (check-holds (type-check ,Δ syn ...))) +(nat-test ∅ (Π (x : nat) nat) (Unv 0)) +(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat)) +(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) zero) + (λ (x : nat) (λ (ih-x : nat) x))) zero) + nat) +(nat-test ∅ nat (Unv 0)) +(nat-test ∅ zero nat) +(nat-test ∅ s (Π (x : nat) nat)) +(nat-test ∅ (s zero) nat) +;; TODO: Meta-function auto-currying and such +(check-holds + (type-infer ,Δ ∅ ((((elim nat (Unv 0)) (λ (x : nat) nat)) + zero) + (λ (x : nat) (λ (ih-x : nat) x))) + t)) +(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat)) + zero) + (λ (x : nat) (λ (ih-x : nat) x))) + zero) + nat) +(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) (s (s x))))) + zero) + nat) +(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) + (s zero)) + (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero) + nat) +(nat-test (∅ n : nat) + (((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n) + nat) +(check-holds + (type-check (,Δ (bool : (Unv 0) ((btrue : bool) (bfalse : bool)))) + (∅ n2 : nat) + (((((elim nat (Unv 0)) (λ (x : nat) bool)) + btrue) + (λ (x : nat) (λ (ih-x : bool) bfalse))) + n2) + bool)) +(check-not-holds + (type-check ,Δ ∅ + ((((elim nat (Unv 0)) nat) (s zero)) zero) + nat)) +(define lam (term (λ (nat : (Unv 0)) nat))) +(check-equivalent + (Π (nat : (Unv 0)) (Unv 0)) + ,(car (judgment-holds (type-infer ,Δ0 ∅ ,lam t) t))) +(check-equivalent + (Π (nat : (Unv 0)) (Unv 0)) + ,(car (judgment-holds (type-infer ,Δ ∅ ,lam t) t))) +(check-equivalent + (Π (x : (Π (y : (Unv 0)) y)) nat) + ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (x : (Π (y : (Unv 0)) y)) (x nat)) + t) t))) +(check-equivalent + (Π (y : (Unv 0)) (Unv 0)) + ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (y : (Unv 0)) y) t) t))) +(check-equivalent + (Unv 0) + ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ + ((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat)) + (λ (y : (Unv 0)) y)) + t) t))) +(check-equal? + (list (term (Unv 0)) (term (Unv 1))) + (judgment-holds + (type-infer ,Δ4 ∅ (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))) + U) U)) +(check-holds + (type-check ,Δ4 (∅ S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))) +(check-holds + (type-check ,Δ4 (∅ S : (Unv 0)) + conj (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : P) (Π (y : Q) ((and P) Q))))))) +(check-holds + (type-check ,Δ4 (∅ S : (Unv 0)) S (Unv 0))) +(check-holds + (type-check ,Δ4 (∅ S : (Unv 0)) (conj S) + (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))) +(check-holds + (type-check ,Δ4 (∅ S : (Unv 0)) (conj S) + (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))) +(check-holds + (type-check ,Δ4 ∅ (λ (S : (Unv 0)) (conj S)) + (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))) +(check-holds + (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ + ((((conj true) true) tt) tt) + ((and true) true))) +(check-holds + (type-infer ,Δ4 ∅ and (in-hole Ξ U_D))) +(check-holds + (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ + ((((conj true) true) tt) tt) + (in-hole Θ and))) +(check-holds + (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ + (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))) + (in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P)))) +(check-holds + (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ + ((((((elim and (Unv 0)) + (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) + true)))) + (λ (A : (Unv 0)) + (λ (B : (Unv 0)) + (λ (a : A) + (λ (b : B) tt))))) + true) true) + ((((conj true) true) tt) tt)) + true)) +(check-true (Γ? (term (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))))) +(check-holds + (type-infer ,Δ4 ∅ and (in-hole Ξ U))) +(check-holds + (type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q)) + ab (in-hole Θ and))) +(check-true + (redex-match? tt-redL + (in-hole Ξ (Π (x : (in-hole Θ and)) U)) + (term (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))))) +(check-holds + (type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q)) + (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) + ((and B) A)))) + (in-hole Ξ (Π (x : (in-hole Θ and)) U)))) +(check-holds + (equivalent ,Δ4 + (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))) + (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0)))))) +(check-holds + (type-infer ,Δ4 ∅ + (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) + ((and B) A)))) + (in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P)))) +(check-holds + (type-check ,Δ4 + (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)) + ((((((elim and (Unv 0)) + (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) + ((and B) A))))) + (λ (A : (Unv 0)) + (λ (B : (Unv 0)) + (λ (a : A) + (λ (b : B) ((((conj B) A) b) a)))))) + P) Q) ab) + ((and Q) P))) +(check-holds + (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ + (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A)))) + (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))) +(check-holds + (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) + ((∅ A : Type) B : Type) + (conj B) + t)) +(check-holds + (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ + ((((((elim and (Unv 0)) + (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) + ((and B) A))))) + (λ (A : (Unv 0)) + (λ (B : (Unv 0)) + (λ (a : A) + (λ (b : B) ((((conj B) A) b) a)))))) + true) true) + ((((conj true) true) tt) tt)) + ((and true) true))) +(define gamma (term (∅ temp863 : pre))) +(check-holds (wf ,sigma ∅)) +(check-holds (wf ,sigma ,gamma)) +(check-holds + (type-infer ,sigma ,gamma (Unv 0) t)) +(check-holds + (type-infer ,sigma ,gamma pre t)) +(check-holds + (type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))) +(check-holds + (type-infer ,sigma ,gamma pre t)) +(check-holds + (type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))) +(check-holds + (type-infer ,sigma (,gamma x : false) false (in-hole Ξ U_D))) +(check-holds + (type-infer ,sigma (,gamma x : false) x (in-hole Θ false))) +(check-holds + (type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x)) + (in-hole Ξ (Π (x : (in-hole Θ false)) U)))) +(check-true + (redex-match? tt-typingL + ((in-hole Θ_m ((elim x_D U) e_P)) e_D) + (term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x))) + x)))) +(check-holds + (type-check ,sigma (,gamma x : false) + (((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x) + (Π (x : (Unv 0)) x))) + +;; nat-equal? tests +(define zero? + (term ((((elim nat Type) (λ (x : nat) bool)) + true) + (λ (x : nat) (λ (x_ih : bool) false))))) +(check-holds + (type-check ,Δ ∅ ,zero? (Π (x : nat) bool))) +(check-equal? + (term (reduce ,Δ (,zero? zero))) + (term true)) +(check-equal? + (term (reduce ,Δ (,zero? (s zero)))) + (term false)) +(define ih-equal? + (term ((((elim nat Type) (λ (x : nat) bool)) + false) + (λ (x : nat) (λ (y : bool) (x_ih x)))))) +(check-holds + (type-check ,Δ (∅ x_ih : (Π (x : nat) bool)) + ,ih-equal? + (Π (x : nat) bool))) +(check-holds + (type-infer ,Δ ∅ nat (Unv 0))) +(check-holds + (type-infer ,Δ ∅ bool (Unv 0))) +(check-holds + (type-infer ,Δ ∅ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0)))) +(define nat-equal? + (term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool))) + ,zero?) + (λ (x : nat) (λ (x_ih : (Π (x : nat) bool)) + ,ih-equal?))))) +(check-holds + (type-check ,Δ (∅ nat-equal? : (Π (x-D«4158» : nat) ((λ (x«4159» : nat) (Π (x«4160» : nat) bool)) x-D«4158»))) + ((nat-equal? zero) zero) + bool)) +(check-holds + (type-check ,Δ ∅ + ,nat-equal? + (Π (x : nat) (Π (y : nat) bool)))) +(check-equal? + (term (reduce ,Δ ((,nat-equal? zero) (s zero)))) + (term false)) +(check-equal? + (term (reduce ,Δ ((,nat-equal? (s zero)) zero))) + (term false)) + +;; == tests +(define Δ= (term (,Δ (== : (Π (A : (Unv 0)) (Π (a : A) (Π (b : A) (Unv 0)))) + ((refl : (Π (A : (Unv 0)) (Π (a : A) (((== A) a) a))))))))) +(check-true (Δ? Δ=)) + +(define refl-elim + (term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((== + A1) + x1) + y1)) + nat))))) + (λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))) +(check-holds + (type-check ,Δ= ∅ ,refl-elim nat)) +(check-true + (redex-match? + tt-redL + (Δ (in-hole E (in-hole Θ ((elim x_D U) e_P)))) + (term (,Δ= ,refl-elim)))) +(check-true + (redex-match? + tt-redL + (in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m) + (term (((((hole + (λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))) +(check-telescope-equiv? + (term (Δ-ref-parameter-Ξ ,Δ= ==)) + (term (Π (A : Type) (Π (a : A) (Π (b : A) hole))))) +(check-equal? + (term (reduce ,Δ= ,refl-elim)) + (term zero)) diff --git a/cur-test/cur/tests/stdlib/bool.rkt b/cur-test/cur/tests/stdlib/bool.rkt new file mode 100644 index 0000000..9de04bd --- /dev/null +++ b/cur-test/cur/tests/stdlib/bool.rkt @@ -0,0 +1,18 @@ +#lang cur +(require + rackunit + cur/stdlib/bool + cur/stdlib/sugar) + +(check-equal? (not true) false) +(check-equal? (not false) true) + +(check-equal? (and true false) false) +(check-equal? (and false false) true) +(check-equal? (and false true) false) +(check-equal? (and true true) true) + +(check-equal? (or true false) true) +(check-equal? (or false false) false) +(check-equal? (or false true) true) +(check-equal? (or true true) true) diff --git a/cur-test/cur/tests/stdlib/maybe.rkt b/cur-test/cur/tests/stdlib/maybe.rkt new file mode 100644 index 0000000..4389a4c --- /dev/null +++ b/cur-test/cur/tests/stdlib/maybe.rkt @@ -0,0 +1,21 @@ +#lang cur + +(require + rackunit + cur/stdlib/sugar + cur/stdlib/bool + cur/stdlib/maybe) + +(check-equal? + (some/i true) + (some Bool true)) +;; Disabled until #22 fixed +#;(check-equal? + (case* Maybe Type (some Bool true) (Bool) + (lambda* (A : Type) (x : (Maybe A)) A) + [(none (A : Type)) IH: () + false] + [(some (A : Type) (x : A)) IH: () + ;; TODO: Don't know how to use dependency yet + (if x true false)]) + true) diff --git a/cur-test/cur/tests/stdlib/nat.rkt b/cur-test/cur/tests/stdlib/nat.rkt new file mode 100644 index 0000000..d1de227 --- /dev/null +++ b/cur-test/cur/tests/stdlib/nat.rkt @@ -0,0 +1,32 @@ +#lang cur +(require + cur/stdlib/sugar + cur/stdlib/nat + cur/stdlib/bool + rackunit) + +(check-equal? (add1 (s z)) (s (s z))) +(check-equal? (sub1 (s z)) z) + +(check-equal? (plus z z) z) +(check-equal? (plus (s (s z)) (s (s z))) (s (s (s (s z))))) + +(check-equal? (mult (s (s z)) z) z) +(check-equal? (mult (s (s z)) (s z)) (s (s z))) + +;; TODO Disabled due to performance bugs +#;(check-equal? (exp z z) (s z)) +#;(check-equal? (exp (s z) z) z) +#;(check-equal? (square (s (s z))) (s (s (s (s z))))) + +(check-equal? (nat-equal? z z) true) +(check-equal? (nat-equal? z (s z)) false) +(check-equal? (nat-equal? (s z) (s z)) true) + +(check-equal? (even? z) true) +(check-equal? (even? (s z)) false) +(check-equal? (even? (s (s z))) true) +(check-equal? (odd? z) false) +(check-equal? (odd? (s z)) true) +(check-equal? (odd? (s (s z))) false) +(check-equal? (odd? (s (s (s z)))) true) diff --git a/cur-test/cur/tests/stdlib/prop.rkt b/cur-test/cur/tests/stdlib/prop.rkt new file mode 100644 index 0000000..a4a881a --- /dev/null +++ b/cur-test/cur/tests/stdlib/prop.rkt @@ -0,0 +1,36 @@ +#lang cur +(require + cur/stdlib/prop + cur/stdlib/sugar + cur/stdlib/bool + cur/stdlib/nat + rackunit) + +(:: pf:anything-implies-true thm:anything-implies-true) +(:: pf:and-is-symmetric thm:and-is-symmetric) +(:: pf:proj1 thm:proj1) +(:: pf:proj2 thm:proj2) +(check-equal? + (elim == Type (λ* (A : Type) (x : A) (y : A) (p : (== A x y)) Nat) + (λ* (A : Type) (x : A) z) + Bool + true + true + (refl Bool true)) + z) + +(check-equal? + (conj/i (conj/i T T) T) + (conj (And True True) True (conj True True T T) T)) + +(define (id (A : Type) (x : A)) x) + +(check-equal? + ((id (== True T T)) + (refl True (run (id True T)))) + (refl True T)) + +(check-equal? + ((id (== True T T)) + (refl True (id True T))) + (refl True T)) diff --git a/cur-test/cur/tests/stdlib/sartactics.rkt b/cur-test/cur/tests/stdlib/sartactics.rkt new file mode 100644 index 0000000..88d70ef --- /dev/null +++ b/cur-test/cur/tests/stdlib/sartactics.rkt @@ -0,0 +1,12 @@ +#lang cur + +(require + rackunit + cur/stdlib/bool + cur/stdlib/sugar + cur/stdlib/tactics/base + cur/stdlib/tactics/sartactics) + +;; TODO: To much randomness for easy automated testing +(define-theorem meow (forall (x : Bool) Bool)) + #;(proof (interactive)) diff --git a/cur-test/cur/tests/stdlib/sugar.rkt b/cur-test/cur/tests/stdlib/sugar.rkt new file mode 100644 index 0000000..d52b356 --- /dev/null +++ b/cur-test/cur/tests/stdlib/sugar.rkt @@ -0,0 +1,51 @@ +#lang cur +(require + rackunit + cur/stdlib/sugar) + +;; TODO: Missing tests for match, others +(check-equal? + ((λ* (x : (Type 1)) (y : (∀* (x : (Type 1)) (Type 1))) (y x)) + Type + (λ (x : (Type 1)) x)) + Type) + +(check-equal? + ((λ* (x : (Type 1)) (y : (→* (Type 1) (Type 1))) (y x)) + Type + (λ (x : (Type 1)) x)) + Type) + +(check-equal? + ((λ* (x : (Type 1)) (y : (→ (Type 1) (Type 1))) (y x)) + Type + (λ (x : (Type 1)) x)) + Type) + +(check-equal? + (let ([x Type] + [y (λ (x : (Type 1)) x)]) + (y x)) + Type) + +(check-equal? + (let ([(x : (Type 1)) Type] + [y (λ (x : (Type 1)) x)]) + (y x)) + Type) + +;; check that raises decent syntax error +;; Can't use this because (lambda () ...) and thunk are not things in Cur at runtime +#;(check-exn + exn:fail:syntax? + (let ([x : (Type 1) Type] + [y (λ (x : (Type 1)) x)]) + (y x))) + +;; check that raises type error +#;(check-exn + exn:fail:syntax? + (let ([x uninferrable-expr] + [y (λ (x : (Type 1)) x)]) + (y x))) + diff --git a/cur-test/cur/tests/stdlib/tactics.rkt b/cur-test/cur/tests/stdlib/tactics.rkt new file mode 100644 index 0000000..c33d129 --- /dev/null +++ b/cur-test/cur/tests/stdlib/tactics.rkt @@ -0,0 +1,36 @@ +#lang cur + +(require + rackunit + cur/stdlib/sugar + cur/stdlib/bool + cur/stdlib/tactics/base + cur/stdlib/tactics/standard) +(define-theorem meow (forall (x : Bool) Bool)) +(check-equal? + ((proof + (intro x) + (by-assumption)) true) + true) +(define-theorem meow1 (forall (x : Bool) Bool)) +(check-equal? + ((proof + (obvious) + ;; TODO: Add ability to check output + #;(print)) true) + true) +(define-theorem meow2 (forall (x : Bool) Bool)) +(check-equal? + ((proof + (intro x) + (restart) + (intro x) + (by-assumption)) true) + true) +(define-theorem meow3 (forall (x : Bool) Bool)) +(check-equal? + ((proof (obvious)) true) + true) +;; TODO: Fix this unit test so it doesn't require interaction +(define-theorem meow4 (forall (x : Bool) Bool)) +#;(proof (interactive)) diff --git a/cur-test/cur/tests/stdlib/typeclass.rkt b/cur-test/cur/tests/stdlib/typeclass.rkt new file mode 100644 index 0000000..a0e9ab8 --- /dev/null +++ b/cur-test/cur/tests/stdlib/typeclass.rkt @@ -0,0 +1,30 @@ +#lang cur + +(require + rackunit + cur/stdlib/sugar + cur/stdlib/bool + cur/stdlib/nat + cur/stdlib/typeclass) + +(typeclass (Eqv (A : Type)) + (equal? : (forall* (a : A) (b : A) Bool))) +(impl (Eqv Bool) + (define (equal? (a : Bool) (b : Bool)) + (if a + (if b true false) + (if b false true)))) +(impl (Eqv Nat) + (define equal? nat-equal?)) +(check-equal? + (equal? z z) + true) +(check-equal? + (equal? z (s z)) + false) +(check-equal? + (equal? true false) + false) +(check-equal? + (equal? true true) + true) diff --git a/examples/stlc.rkt b/cur-test/cur/tests/stlc.rkt similarity index 84% rename from examples/stlc.rkt rename to cur-test/cur/tests/stlc.rkt index 4fa1e74..7143501 100644 --- a/examples/stlc.rkt +++ b/cur-test/cur/tests/stlc.rkt @@ -1,18 +1,19 @@ -#lang s-exp "../cur.rkt" +#lang cur (require - "../stdlib/nat.rkt" - "../stdlib/sugar.rkt" - "../oll.rkt" - "../stdlib/maybe.rkt" - "../stdlib/bool.rkt" - "../stdlib/prop.rkt") + rackunit + cur/stdlib/nat + cur/stdlib/sugar + cur/oll + cur/stdlib/maybe + cur/stdlib/bool + cur/stdlib/prop) (define-language stlc #:vars (x) #:output-coq "stlc.v" #:output-latex "stlc.tex" (val (v) ::= true false unit) - ;; TODO: Allow datum as terminals + ;; TODO: Allow datum, like 1, as terminals (type (A B) ::= boolty unitty (-> A B) (* A A)) (term (e) ::= x v (app e e) (lambda (x : A) e) (cons e e) (let (x x) = e in e))) @@ -126,19 +127,17 @@ #'stlc-unitty #'e)]))) -(module+ test - (require rackunit) - (check-equal? - (begin-stlc (lambda (x : 1) x)) - (stlc-lambda (avar z) stlc-unitty (Var-->-stlc-term (avar z)))) - (check-equal? - (begin-stlc ((lambda (x : 1) x) ())) - (stlc-app (stlc-lambda (avar z) stlc-unitty (Var-->-stlc-term (avar z))) - (stlc-val-->-stlc-term stlc-unit))) - (check-equal? - (begin-stlc '(() ())) - (stlc-cons (stlc-val-->-stlc-term stlc-unit) - (stlc-val-->-stlc-term stlc-unit))) - (check-equal? - (begin-stlc #t) - (stlc-val-->-stlc-term stlc-true))) +(check-equal? + (begin-stlc (lambda (x : 1) x)) + (stlc-lambda (avar z) stlc-unitty (Var-->-stlc-term (avar z)))) +(check-equal? + (begin-stlc ((lambda (x : 1) x) ())) + (stlc-app (stlc-lambda (avar z) stlc-unitty (Var-->-stlc-term (avar z))) + (stlc-val-->-stlc-term stlc-unit))) +(check-equal? + (begin-stlc '(() ())) + (stlc-cons (stlc-val-->-stlc-term stlc-unit) + (stlc-val-->-stlc-term stlc-unit))) +(check-equal? + (begin-stlc #t) + (stlc-val-->-stlc-term stlc-true)) diff --git a/cur-test/info.rkt b/cur-test/info.rkt new file mode 100644 index 0000000..c042052 --- /dev/null +++ b/cur-test/info.rkt @@ -0,0 +1,7 @@ +#lang info +(define collection 'multi) +(define deps '()) +(define build-deps '("base" "rackunit-lib" ("cur-lib" #:version "0.2"))) +(define update-implies '("cur-lib")) +(define pkg-desc "Tests for \"cur\".") +(define pkg-authors '(wilbowma)) diff --git a/cur/info.rkt b/cur/info.rkt new file mode 100644 index 0000000..b4cb13d --- /dev/null +++ b/cur/info.rkt @@ -0,0 +1,6 @@ +#lang info +(define collection 'multi) +(define deps '("cur-lib" "cur-doc" "cur-test")) +(define implies '("cur-lib" "cur-doc" "cur-test")) +(define pkg-desc "Dependent types with parenthesis and meta-programming.") +(define pkg-authors '(wilbowma)) diff --git a/curnel/redex-core.rkt b/curnel/redex-core.rkt deleted file mode 100644 index 61ec66b..0000000 --- a/curnel/redex-core.rkt +++ /dev/null @@ -1,1245 +0,0 @@ -#lang racket/base - -(require - racket/function - redex/reduction-semantics) - -(provide - (all-defined-out)) - -(set-cache-size! 10000) - -;; Test suite setup. -(module+ test - (require - rackunit - (only-in racket/set set=?)) - (define-syntax-rule (check-holds (e ...)) - (check-true - (judgment-holds (e ...)))) - (define-syntax-rule (check-not-holds (e ...)) - (check-false - (judgment-holds (e ...)))) - (define-syntax-rule (check-equiv? e1 e2) - (check (default-equiv) e1 e2)) - (define-syntax-rule (check-not-equiv? e1 e2) - (check (compose not (default-equiv)) e1 e2))) - -#| References: - | http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf - | https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf - | http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf - | http://people.cs.kuleuven.be/~jesper.cockx/Without-K/Pattern-matching-without-K.pdf - | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.74 - | http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf - |# - -#| ttL is the core language of Cur. Very similar to TT (Idirs core) and Luo's UTT. Surface - | langauge should provide short-hand, such as -> for non-dependent function types, and type - | inference. - |# -(define-language ttL - (i j k ::= natural) - (U ::= (Unv i)) - (t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e) (elim D U)) - ;; Δ (signature). (inductive-name : type ((constructor : type) ...)) - ;; NB: Δ is a map from a name x to a pair of it's type and a map of constructor names to their types - (Δ ::= ∅ (Δ (D : t ((c : t) ...)))) - (D x c ::= variable-not-otherwise-mentioned) - #:binding-forms - (λ (x : t) e #:refers-to x) - (Π (x : t_0) t_1 #:refers-to x)) - -(define x? (redex-match? ttL x)) -(define t? (redex-match? ttL t)) -(define e? (redex-match? ttL e)) -(define U? (redex-match? ttL U)) -(define Δ? (redex-match? ttL Δ)) - -(module+ test - (define-term Type (Unv 0)) - (check-true (x? (term T))) - (check-true (x? (term A))) - (check-true (x? (term truth))) - (check-true (x? (term zero))) - (check-true (x? (term s))) - (check-true (t? (term zero))) - (check-true (t? (term s))) - (check-true (x? (term nat))) - (check-true (t? (term nat))) - (check-true (t? (term A))) - (check-true (t? (term S))) - (check-true (U? (term (Unv 0)))) - (check-true (U? (term Type))) - (check-true (e? (term (λ (x_0 : (Unv 0)) x_0)))) - (check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))) - (check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))) - - ;; TODO: Rename these signatures, and use them in all future tests. - (define Δ (term ((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat))))) - (bool : (Unv 0) ((true : bool) (false : bool)))))) - (define Δ0 (term ∅)) - (define Δ3 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ())))) - (define Δ4 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) - ((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))))) - (check-true (Δ? Δ0)) - (check-true (Δ? Δ)) - (check-true (Δ? Δ4)) - (check-true (Δ? Δ3)) - (check-true (Δ? Δ4)) - (define sigma (term ((((((∅ (true : (Unv 0) ((T : true)))) - (false : (Unv 0) ())) - (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) - ())) - (nat : (Unv 0) ())) - (heap : (Unv 0) ())) - (pre : (Π (temp808 : heap) (Unv 0)) ())))) - (check-true (Δ? (term (∅ (true : (Unv 0) ((T : true))))))) - (check-true (Δ? (term (∅ (false : (Unv 0) ()))))) - (check-true (Δ? (term (∅ (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) - ()))))) - (check-true (Δ? (term (∅ (nat : (Unv 0) ()))))) - (check-true (Δ? (term (∅ (pre : (Π (temp808 : heap) (Unv 0)) ()))))) - - (check-true (Δ? (term ((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))))) - (check-true (Δ? (term (((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())) - (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) - ()))))) - (check-true (Δ? sigma))) - -;;; ------------------------------------------------------------------------ -;;; Universe typing - -(define-judgment-form ttL - #:mode (unv-type I O) - #:contract (unv-type U U) - - [(where i_1 ,(add1 (term i_0))) - ----------------- - (unv-type (Unv i_0) (Unv i_1))]) - -;; Universe predicativity rules. Impredicative in (Unv 0) -(define-judgment-form ttL - #:mode (unv-pred I I O) - #:contract (unv-pred U U U) - - [---------------- - (unv-pred (Unv i) (Unv 0) (Unv 0))] - - [(where i_3 ,(max (term i_1) (term i_2))) - ---------------- - (unv-pred (Unv i_1) (Unv i_2) (Unv i_3))]) - -(define-metafunction ttL - α-equivalent? : t t -> #t or #f - [(α-equivalent? t_0 t_1) - ,(alpha-equivalent? ttL (term t_0) (term t_1))]) - -(module+ test - (default-equiv (lambda (x y) (term (α-equivalent? ,x ,y))))) - -;; Replace x by t_1 in t_0 -(define-metafunction ttL - subst : t x t -> t - [(subst t_0 x t_1) - (substitute t_0 x t_1)]) - -(module+ test - (check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B)))))) - (check-true - (term - (α-equivalent? - (Π (a : S) (Π (b : B) ((and S) B))) - (subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))) - -(define-metafunction ttL - subst-all : t (x ...) (e ...) -> t - [(subst-all t () ()) t] - [(subst-all t (x_0 x ...) (e_0 e ...)) - (subst-all (subst t x_0 e_0) (x ...) (e ...))]) - -;;; ------------------------------------------------------------------------ -;;; Primitive Operations on signatures Δ (those operations that do not require contexts) - -;;; TODO: Might be worth maintaining the above bijection between Δ and maps for performance reasons - -;; TODO: This is doing too many things -;; NB: Depends on clause order -(define-metafunction ttL - Δ-ref-type : Δ x -> t or #f - [(Δ-ref-type ∅ x) #f] - [(Δ-ref-type (Δ (x : t any)) x) t] - [(Δ-ref-type (Δ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t] - [(Δ-ref-type (Δ (x_0 : t_0 any)) x) (Δ-ref-type Δ x)]) - -(define-metafunction ttL - Δ-set : Δ x t ((x : t) ...) -> Δ - [(Δ-set Δ x t any) (Δ (x : t any))]) - -(define-metafunction ttL - Δ-union : Δ Δ -> Δ - [(Δ-union Δ ∅) Δ] - [(Δ-union Δ_2 (Δ_1 (x : t any))) - ((Δ-union Δ_2 Δ_1) (x : t any))]) - -;; Returns the inductively defined type that x constructs -;; NB: Depends on clause order -(define-metafunction ttL - Δ-key-by-constructor : Δ x -> x - [(Δ-key-by-constructor (Δ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c) - x] - [(Δ-key-by-constructor (Δ (x_1 : t_1 any)) x) - (Δ-key-by-constructor Δ x)]) - -(module+ test - (check-equal? - (term (Δ-key-by-constructor ,Δ zero)) - (term nat)) - (check-equal? - (term (Δ-key-by-constructor ,Δ s)) - (term nat))) - -;; Returns the constructor map for the inductively defined type x_D in the signature Δ -(define-metafunction ttL - Δ-ref-constructor-map : Δ x -> ((x : t) ...) or #f - ;; NB: Depends on clause order - [(Δ-ref-constructor-map ∅ x_D) #f] - [(Δ-ref-constructor-map (Δ (x_D : t_D any)) x_D) - any] - [(Δ-ref-constructor-map (Δ (x_1 : t_1 any)) x_D) - (Δ-ref-constructor-map Δ x_D)]) - -(module+ test - (check-equal? - (term (Δ-ref-constructor-map ,Δ nat)) - (term ((zero : nat) (s : (Π (x : nat) nat))))) - (check-equal? - (term (Δ-ref-constructor-map ,sigma false)) - (term ()))) - -;; TODO: Should not use Δ-ref-type -(define-metafunction ttL - Δ-ref-constructor-type : Δ x x -> t - [(Δ-ref-constructor-type Δ x_D x_ci) - (Δ-ref-type Δ x_ci)]) - -;; Get the list of constructors for the inducitvely defined type x_D -;; NB: Depends on clause order -(define-metafunction ttL - Δ-ref-constructors : Δ x -> (x ...) or #f - [(Δ-ref-constructors ∅ x_D) #f] - [(Δ-ref-constructors (Δ (x_D : t_D ((x : t) ...))) x_D) - (x ...)] - [(Δ-ref-constructors (Δ (x_1 : t_1 any)) x_D) - (Δ-ref-constructors Δ x_D)]) - -;; NB: Depends on clause order -(define-metafunction ttL - sequence-index-of : any (any ...) -> natural - [(sequence-index-of any_0 (any_0 any ...)) - 0] - [(sequence-index-of any_0 (any_1 any ...)) - ,(add1 (term (sequence-index-of any_0 (any ...))))]) - -;; Get the index of the constructor x_ci in the list of constructors for x_D -(define-metafunction ttL - Δ-constructor-index : Δ x x -> natural - [(Δ-constructor-index Δ x_D x_ci) - (sequence-index-of x_ci (Δ-ref-constructors Δ x_D))]) - -;;; ------------------------------------------------------------------------ -;;; Operations that involve contexts. - -(define-extended-language tt-ctxtL ttL - ;; Telescope. - ;; NB: There is a bijection between this an a vector of maps from x to t - (Ξ Φ ::= hole (Π (x : t) Ξ)) - ;; Apply context - ;; NB: There is a bijection between this an a vector expressions - (Θ ::= hole (Θ e))) - -(define Ξ? (redex-match? tt-ctxtL Ξ)) -(define Φ? (redex-match? tt-ctxtL Φ)) -(define Θ? (redex-match? tt-ctxtL Θ)) - -(module+ test - ;; Are these telescopes the same when filled with alpha-equivalent, and equivalently renamed, termed - (define (telescope-equiv x y) - (alpha-equivalent? ttL (term (in-hole ,x (Unv 0))) (term (in-hole ,y (Unv 0))))) - (define-syntax-rule (check-telescope-equiv? e1 e2) - (check telescope-equiv e1 e2)) - (define-syntax-rule (check-telescope-not-equiv? e1 e2) - (check (compose not telescope-equiv) e1 e2))) - -;; TODO: Might be worth it to actually maintain the above bijections, for performance reasons. - -;; Return the parameters of x_D as a telescope Ξ -;; TODO: Define generic traversals of Δ and Γ ? -(define-metafunction tt-ctxtL - Δ-ref-parameter-Ξ : Δ x -> Ξ - [(Δ-ref-parameter-Ξ (Δ (x_D : (in-hole Ξ U) any)) x_D) - Ξ] - [(Δ-ref-parameter-Ξ (Δ (x_1 : t_1 any)) x_D) - (Δ-ref-parameter-Ξ Δ x_D)]) - -(module+ test - (check-telescope-equiv? - (term (Δ-ref-parameter-Ξ ,Δ nat)) - (term hole)) - (check-telescope-equiv? - (term (Δ-ref-parameter-Ξ ,Δ4 and)) - (term (Π (A : Type) (Π (B : Type) hole))))) - -;; Applies the term t to the telescope Ξ. -;; TODO: Test -#| TODO: - | This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true - | that (equivalent t (Ξ-apply Ξ t))? - | Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)? Yes. - |# -(define-metafunction tt-ctxtL - Ξ-apply : Ξ t -> t - [(Ξ-apply hole t) t] - [(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))]) - -;; Compose multiple telescopes into a single telescope: -(define-metafunction tt-ctxtL - Ξ-compose : Ξ Ξ ... -> Ξ - [(Ξ-compose Ξ) Ξ] - [(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...) - (Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)]) - -(module+ test - (check-telescope-equiv? - (term (Ξ-compose - (Π (x : t_0) (Π (y : t_1) hole)) - (Π (z : t_2) (Π (a : t_3) hole)))) - (term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole))))))) - -;; Compute the number of arguments in a Ξ -(define-metafunction tt-ctxtL - Ξ-length : Ξ -> natural - [(Ξ-length hole) 0] - [(Ξ-length (Π (x : t) Ξ)) ,(add1 (term (Ξ-length Ξ)))]) - -;; Compute the number of applications in a Θ -(define-metafunction tt-ctxtL - Θ-length : Θ -> natural - [(Θ-length hole) 0] - [(Θ-length (Θ e)) ,(add1 (term (Θ-length Θ)))]) - -;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole. -(define-metafunction tt-ctxtL - Θ-ref : Θ natural -> e or #f - [(Θ-ref hole natural) #f] - [(Θ-ref (in-hole Θ (hole e)) 0) e] - [(Θ-ref (in-hole Θ (hole e)) natural) (Θ-ref Θ ,(sub1 (term natural)))]) - -;;; ------------------------------------------------------------------------ -;;; Computing the types of eliminators - -;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D -(define-metafunction tt-ctxtL - Δ-constructor-telescope : Δ x x -> Ξ - [(Δ-constructor-telescope Δ x_D x_ci) - Ξ - (where (in-hole Ξ (in-hole Θ x_D)) - (Δ-ref-constructor-type Δ x_D x_ci))]) - -;; Returns the parameter arguments as an apply context of the constructor x_ci of the inductively -;; defined type x_D -(define-metafunction tt-ctxtL - Δ-constructor-parameters : Δ x x -> Θ - [(Δ-constructor-parameters Δ x_D x_ci) - Θ - (where (in-hole Ξ (in-hole Θ x_D)) - (Δ-ref-constructor-type Δ x_D x_ci))]) - -;; Inner loop for Δ-constructor-noninductive-telescope -(define-metafunction tt-ctxtL - noninductive-loop : x Φ -> Φ - [(noninductive-loop x_D hole) hole] - [(noninductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)) - (noninductive-loop x_D Φ_1)] - [(noninductive-loop x_D (Π (x : t) Φ_1)) - (Π (x : t) (noninductive-loop x_D Φ_1))]) - -;; Returns the noninductive arguments to the constructor x_ci of the inductively defined type x_D -(define-metafunction tt-ctxtL - Δ-constructor-noninductive-telescope : Δ x x -> Ξ - [(Δ-constructor-noninductive-telescope Δ x_D x_ci) - (noninductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))]) - -;; Inner loop for Δ-constructor-inductive-telescope -;; NB: Depends on clause order -(define-metafunction tt-ctxtL - inductive-loop : x Φ -> Φ - [(inductive-loop x_D hole) hole] - [(inductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)) - (Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-loop x_D Φ_1))] - [(inductive-loop x_D (Π (x : t) Φ_1)) - (inductive-loop x_D Φ_1)]) - -;; Returns the inductive arguments to the constructor x_ci of the inducitvely defined type x_D -(define-metafunction tt-ctxtL - Δ-constructor-inductive-telescope : Δ x x -> Ξ - [(Δ-constructor-inductive-telescope Δ x_D x_ci) - (inductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))]) - -;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with -;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D -(define-metafunction tt-ctxtL - hypotheses-loop : x t Φ -> Φ - [(hypotheses-loop x_D t_P hole) hole] - [(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))) - ;; TODO: Instead of this nonsense, it might be simpler to pass in the type of t_P and use that - ;; as/to compute the type of the hypothesis. - (Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x)))) - (hypotheses-loop x_D t_P Φ_1)) - (where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))]) - -;; Returns the inductive hypotheses required for the elimination method of constructor x_ci for -;; inductive type x_D, when eliminating with motive t_P. -(define-metafunction tt-ctxtL - Δ-constructor-inductive-hypotheses : Δ x x t -> Ξ - [(Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P) - (hypotheses-loop x_D t_P (Δ-constructor-inductive-telescope Δ x_D x_ci))]) - -(define-metafunction tt-ctxtL - Δ-constructor-method-telescope : Δ x x t -> Ξ - [(Δ-constructor-method-telescope Δ x_D x_ci t_P) - (Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci))))) - hole) - (where Θ_p (Δ-constructor-parameters Δ x_D x_ci)) - (where Ξ_a (Δ-constructor-telescope Δ x_D x_ci)) - (where Ξ_h (Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P)) - (where x_mi ,(variable-not-in (term (t_P Δ)) 'x-mi))]) - -;; fold Ξ-compose over map Δ-constructor-method-telescope over the list of constructors -(define-metafunction tt-ctxtL - method-loop : Δ x t (x ...) -> Ξ - [(method-loop Δ x_D t_P ()) hole] - [(method-loop Δ x_D t_P (x_0 x_rest ...)) - (Ξ-compose (Δ-constructor-method-telescope Δ x_D x_0 t_P) (method-loop Δ x_D t_P (x_rest ...)))]) - -;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P -(define-metafunction tt-ctxtL - Δ-methods-telescope : Δ x t -> Ξ - [(Δ-methods-telescope Δ x_D t_P) - (method-loop Δ x_D t_P (Δ-ref-constructors Δ x_D))]) - -(module+ test - (check-telescope-equiv? - (term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat))) - (term (Π (m-zero : ((λ (x : nat) nat) zero)) - (Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole)))) - (check-telescope-equiv? - (term (Δ-methods-telescope ,Δ nat P)) - (term (Π (m-zero : (P zero)) - (Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x))))) - hole)))) - (check-telescope-equiv? - (term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat))) - (term (Π (m-zero : ((λ (x : nat) nat) zero)) - (Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) - hole)))) - (check-telescope-equiv? - (term (Δ-methods-telescope ,Δ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))))) - (term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) - ((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))) - A) - B) - ((((conj A) B) a) b))))))) - hole))) - (check-true (x? (term false))) - (check-true (Ξ? (term hole))) - (check-true (t? (term (λ (y : false) (Π (x : Type) x))))) - (check-true (redex-match? ttL ((x : t) ...) (term ()))) - (check-telescope-equiv? - (term (Δ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x)))) - (term hole))) - -;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result -;; is in universe U. -;; -;; The type of (elim x_D U) is something like: -;; (∀ (P : (∀ a -> ... -> (D a ...) -> U)) -;; (method_ci ...) -> ... -> -;; (a -> ... -> (D a ...) -> -;; (P a ... (D a ...)))) -;; -;; x_D is an inductively defined type -;; U is the sort the motive -;; x_P is the name of the motive -;; Ξ_P*D is the telescope of the parameters of x_D and -;; the witness of type x_D (applied to the parameters) -;; Ξ_m is the telescope of the methods for x_D -(define-metafunction tt-ctxtL - Δ-elim-type : Δ x U -> t - [(Δ-elim-type Δ x_D U) - (Π (x_P : (in-hole Ξ_P*D U)) - ;; The methods Ξ_m for each constructor of type x_D - (in-hole Ξ_m - ;; And finally, the parameters and discriminant - (in-hole Ξ_P*D - ;; The result is (P a ... (x_D a ...)), i.e., the motive - ;; applied to the paramters and discriminant - (Ξ-apply Ξ_P*D x_P)))) - ;; Get the parameters of x_D - (where Ξ (Δ-ref-parameter-Ξ Δ x_D)) - ;; A fresh name to bind the discriminant - (where x ,(variable-not-in (term (Δ Γ x_D Ξ)) 'x-D)) - ;; The telescope (∀ a -> ... -> (D a ...) hole), i.e., - ;; of the parameters and the inductive type applied to the - ;; parameters - (where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ x_D)) hole))) - ;; A fresh name for the motive - (where x_P ,(variable-not-in (term (Δ Γ x_D Ξ Ξ_P*D x)) 'x-P)) - ;; The types of the methods for this inductive. - (where Ξ_m (Δ-methods-telescope Δ x_D x_P))]) - -;; TODO: This might belong in the next section, since it's related to evaluation -;; Generate recursive applications of the eliminator for each inductive argument of type x_D. -;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor -;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i, -;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i) -(define-metafunction tt-ctxtL - Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ - [(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (in-hole Θ_i (hole (name t_i (in-hole Θ_r x_ci))))) - ((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i) - (in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P))) - (side-condition (memq (term x_ci) (term (Δ-ref-constructors Δ x_D))))] - [(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_nr) hole]) - -;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction. -(module+ test - (check-true - (redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero)))) - (check-telescope-equiv? - (term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole - ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - (hole zero))) - (term (hole (((((elim nat Type) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - zero)))) - (check-telescope-equiv? - (term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole - ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - (hole (s zero)))) - (term (hole (((((elim nat Type) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - (s zero)))))) - -;;; ------------------------------------------------------------------------ -;;; Dynamic semantics -;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the -;;; inductively defined type x with a motive whose result is in universe U - -(define-extended-language tt-redL tt-ctxtL - ;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However, - ;; determining whether or not it is partially applied cannot be done with the grammar alone. - (v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U))) - (Θv ::= hole (Θv v)) - ;; call-by-value, plus reduce under Π (helps with typing checking) - (E ::= hole (E e) (v E) (Π (x : v) E) (Π (x : E) e))) - -(define Θv? (redex-match? tt-redL Θv)) -(define E? (redex-match? tt-redL E)) -(define v? (redex-match? tt-redL v)) - -(module+ test - (check-true (v? (term (λ (x_0 : (Unv 0)) x_0)))) - (check-true (v? (term (refl Nat)))) - (check-true (v? (term ((refl Nat) z))))) - -(define tt--> - (reduction-relation tt-redL - (--> (Δ (in-hole E ((λ (x : t_0) t_1) t_2))) - (Δ (in-hole E (subst t_1 x t_2))) - -->β) - (--> (Δ (in-hole E (in-hole Θv ((elim x_D U) v_P)))) - (Δ (in-hole E (in-hole Θ_r (in-hole Θv_i v_mi)))) - #| - | The elim form must appear applied like so: - | (elim x_D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...)) - | - | Where: - | x_D is the inductive being eliminated - | U is the universe of the result of the motive - | v_P is the motive - | m_{0..n} are the methods - | p ... are the parameters of x_D - | c_i is a constructor of x_d - | a ... are the arguments to c_i - | Unfortunately, Θ contexts turn all this inside out: - | TODO: Write better abstractions for this notation - |# - ;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and - ;; the discriminant: the constructor x_ci applied to its argument Θv_i - (where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv) - ;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other - ;; arguments. - (side-condition (equal? (term (Θ-length Θv_p)) (term (Ξ-length (Δ-ref-parameter-Ξ Δ x_D))))) - ;; Ensure x_ci is actually a constructor for x_D - (where (x_c* ...) (Δ-ref-constructors Δ x_D)) - (side-condition (memq (term x_ci) (term (x_c* ...)))) - ;; There should be a number of methods equal to the number of constructors; to ensure E - ;; doesn't capture methods and Θv_m doesn't capture other arguments - (side-condition (equal? (length (term (x_c* ...))) (term (Θ-length Θv_m)))) - ;; Find the method for constructor x_ci, relying on the order of the arguments. - (where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ x_D x_ci))) - ;; Generate the inductive recursion - (where Θ_r (Δ-inductive-elim Δ x_D U v_P Θv_p Θv_m Θv_i)) - -->elim))) - -(define-metafunction tt-redL - step : Δ e -> e - [(step Δ e) - e_r - (where (_ e_r) ,(car (apply-reduction-relation tt--> (term (Δ e)))))]) - -(define-metafunction tt-redL - reduce : Δ e -> e - [(reduce Δ e) - e_r - (where (_ e_r) - ,(let ([r (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)]) - ;; Efficient check for (= (length r) 1) - ;; NB: Check is overly aggressive and produces wrong error, - ;; because not reducing under lambda. - #;(unless (null? (cdr r)) - (error "Church-Rosser broken" r)) - (car r)))]) - -;; TODO: Move equivalence up here, and use in these tests. -(module+ test - (check-equiv? (term (reduce ∅ (Unv 0))) (term (Unv 0))) - (check-equiv? (term (reduce ∅ ((λ (x : t) x) (Unv 0)))) (term (Unv 0))) - (check-not-equiv? (term (reduce ∅ ((Π (x : t) x) (Unv 0)))) (term (Unv 0))) - (check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0))))) - (term (Π (x : t) (Unv 0)))) - (check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x)))) - (term (Π (x : t) (x x)))) - (check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) - (s (s x))))) - zero))) - (term (s zero))) - (check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) - (s (s x))))) - (s zero)))) - (term (s (s zero)))) - (check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - (s (s (s zero)))))) - (term (s (s (s (s zero)))))) - - (check-equiv? - (term (reduce ,Δ - (((((elim nat Type) (λ (x : nat) nat)) - (s (s zero))) - (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) - (s (s zero))))) - (term (s (s (s (s zero)))))) - (check-equiv? - (term (step ,Δ - (((((elim nat Type) (λ (x : nat) nat)) - (s (s zero))) - (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) - (s (s zero))))) - (term - (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) - (s zero)) - (((((elim nat Type) (λ (x : nat) nat)) - (s (s zero))) - (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) - (s zero))))) - (check-equiv? - (term (step ,Δ (step ,Δ - (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) - (s zero)) - (((((elim nat Type) (λ (x : nat) nat)) - (s (s zero))) - (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) - (s zero)))))) - (term - ((λ (ih-x1 : nat) (s ih-x1)) - (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) - zero) - (((((elim nat Type) (λ (x : nat) nat)) - (s (s zero))) - (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) - zero)))))) - -(define-judgment-form tt-redL - #:mode (equivalent I I I) - #:contract (equivalent Δ t t) - - [(where t_2 (reduce Δ t_0)) - (where t_3 (reduce Δ t_1)) - (side-condition (α-equivalent? t_2 t_3)) - ----------------- "≡-αβ" - (equivalent Δ t_0 t_1)]) -(module+ test - (define-syntax-rule (check-equivalent e1 e2) - (check-holds (equivalent ∅ e1 e2))) - (check-equivalent - (λ (x : Type) x) (λ (y : Type) y)) - (check-equivalent - (Π (x : Type) x) (Π (y : Type) y))) - -;;; ------------------------------------------------------------------------ -;;; Type checking and synthesis - -(define-extended-language tt-typingL tt-redL - ;; NB: There may be a bijection between Γ and Ξ. That's interesting. - ;; NB: Also a bijection between Γ and a list of maps from x to t. - (Γ ::= ∅ (Γ x : t))) -(define Γ? (redex-match? tt-typingL Γ)) - -(define-metafunction tt-typingL - Γ-union : Γ Γ -> Γ - [(Γ-union Γ ∅) Γ] - [(Γ-union Γ_2 (Γ_1 x : t)) - ((Γ-union Γ_2 Γ_1) x : t)]) - -(define-metafunction tt-typingL - Γ-set : Γ x t -> Γ - [(Γ-set Γ x t) (Γ x : t)]) - -;; NB: Depends on clause order -(define-metafunction tt-typingL - Γ-ref : Γ x -> t or #f - [(Γ-ref ∅ x) #f] - [(Γ-ref (Γ x : t) x) t] - [(Γ-ref (Γ x_0 : t_0) x_1) (Γ-ref Γ x_1)]) - -;; NB: Depends on clause order -(define-metafunction tt-typingL - Γ-remove : Γ x -> Γ - [(Γ-remove ∅ x) ∅] - [(Γ-remove (Γ x : t) x) Γ] - [(Γ-remove (Γ x_0 : t_0) x_1) (Γ-remove Γ x_1)]) - -(define-metafunction tt-typingL - nonpositive : x t -> #t or #f - [(nonpositive x (in-hole Θ x)) - #t] - [(nonpositive x (Π (x_0 : (in-hole Θ x)) t)) - #f] - [(nonpositive x (Π (x_0 : t_0) t)) - ,(and (term (positive x t_0)) (term (nonpositive x t)))] - [(nonpositive x t) #t]) - -(define-metafunction tt-typingL - positive : x t -> #t or #f - [(positive x (in-hole Θ x)) - #f] - [(positive x (Π (x_0 : (in-hole Θ x)) t)) - (positive x t)] - [(positive x (Π (x_0 : t_0) t)) - ,(and (term (nonpositive x t_0)) (term (positive x t)))] - [(positive x t) #t]) - -(define-metafunction tt-typingL - positive* : x (t ...) -> #t or #f - [(positive* x_D ()) #t] - [(positive* x_D (t_c t_rest ...)) - ;; Replace the result of the constructor with (Unv 0), to avoid the result being considered a - ;; nonpositive position. - ,(and (term (positive x_D (in-hole Ξ (Unv 0)))) (term (positive* x_D (t_rest ...)))) - (where (in-hole Ξ (in-hole Θ x_D)) t_c)]) - -;; NB: These tests may or may not fail because positivity checking is not implemented. -(module+ test - (check-true (term (positive* nat (nat)))) - (check-true (term (positive* nat ((Π (x : (Unv 0)) (Π (y : (Unv 0)) nat)))))) - (check-true (term (positive* nat ((Π (x : nat) nat))))) - ;; (nat -> nat) -> nat - ;; Not sure if this is actually supposed to pass - (check-false (term (positive* nat ((Π (x : (Π (y : nat) nat)) nat))))) - ;; ((Unv 0) -> nat) -> nat - (check-true (term (positive* nat ((Π (x : (Π (y : (Unv 0)) nat)) nat))))) - ;; (((nat -> (Unv 0)) -> nat) -> nat) - (check-true (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat))))) - ;; Not sure if this is actually supposed to pass - ;; ((nat -> nat) -> nat) -> nat - (check-false (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat)))))) - -;; Holds when the signature Δ and typing context Γ are well-formed. -(define-judgment-form tt-typingL - #:mode (wf I I) - #:contract (wf Δ Γ) - - [----------------- "WF-Empty" - (wf ∅ ∅)] - - [(type-infer Δ Γ t t_0) - (wf Δ Γ) - ----------------- "WF-Var" - (wf Δ (Γ x : t))] - - [(wf Δ ∅) - (type-infer Δ ∅ t_D U_D) - (type-infer Δ (∅ x_D : t_D) t_c U_c) ... - ;; NB: Ugh this should be possible with pattern matching alone .... - (side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...)))) - (side-condition (positive* x_D (t_c ...))) - ----------------- "WF-Inductive" - (wf (Δ (x_D : t_D - ;; Checks that a constructor for x actually produces an x, i.e., that - ;; the constructor is well-formed. - ((x_c : (name t_c (in-hole Ξ (in-hole Θ x_D*)))) ...))) ∅)]) - -(module+ test - (check-true (judgment-holds (wf ,Δ0 ∅))) - (check-true (redex-match? tt-redL (in-hole Ξ (Unv 0)) (term (Unv 0)))) - (check-true (redex-match? tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat))) - (term (Π (x : nat) nat)))) - (define (bindings-equal? l1 l2) - (map set=? l1 l2)) - (check-pred - (curry bindings-equal? - (list (list - (make-bind 'Ξ (term (Π (x : nat) hole))) - (make-bind 'Φ (term hole)) - (make-bind 'Θ (term hole))) - (list - (make-bind 'Ξ (term hole)) - (make-bind 'Φ (term (Π (x : nat) hole))) - (make-bind 'Θ (term hole))))) - (map match-bindings (redex-match tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat))) - (term (Π (x : nat) nat))))) - (check-pred - (curry bindings-equal? - (list - (list - (make-bind 'Φ (term (Π (x : nat) hole))) - (make-bind 'Θ (term hole))))) - (map match-bindings (redex-match tt-redL (in-hole hole (in-hole Φ (in-hole Θ nat))) - (term (Π (x : nat) nat))))) - - (check-true - (redex-match? tt-redL - (in-hole hole (in-hole hole (in-hole hole nat))) - (term nat))) - (check-true - (redex-match? tt-redL - (in-hole hole (in-hole (Π (x : nat) hole) (in-hole hole nat))) - (term (Π (x : nat) nat)))) - (check-holds (wf (∅ (nat : (Unv 0) ())) ∅)) - - (check-holds (wf ,Δ0 ∅)) - (check-holds (type-infer ∅ ∅ (Unv 0) U)) - (check-holds (type-infer ∅ (∅ nat : (Unv 0)) nat U)) - (check-holds (type-infer ∅ (∅ nat : (Unv 0)) (Π (x : nat) nat) U)) - (check-true (term (positive* nat (nat (Π (x : nat) nat))))) - (check-holds - (wf (∅ (nat : (Unv 0) ((zero : nat)))) ∅)) - (check-holds - (wf (∅ (nat : (Unv 0) ((s : (Π (x : nat) nat))))) ∅)) - (check-holds (wf ,Δ ∅)) - - (check-holds (wf ,Δ3 ∅)) - (check-holds (wf ,Δ4 ∅)) - (check-holds (wf (∅ (truth : (Unv 0) ())) ∅)) - (check-holds (wf ∅ (∅ x : (Unv 0)))) - (check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : nat))) - (check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : (Π (x : nat) nat))))) - - -;; TODO: Bi-directional and inference? -;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf - -;; Holds when e has type t under signature Δ and typing context Γ -(define-judgment-form tt-typingL - #:mode (type-infer I I I O) - #:contract (type-infer Δ Γ e t) - - [(wf Δ Γ) - (unv-type U_0 U_1) - ----------------- "DTR-Unv" - (type-infer Δ Γ U_0 U_1)] - - [(where t (Δ-ref-type Δ x)) - ----------------- "DTR-Inductive" - (type-infer Δ Γ x t)] - - [(where t (Γ-ref Γ x)) - ----------------- "DTR-Start" - (type-infer Δ Γ x t)] - - [(type-infer Δ (Γ x : t_0) e t_1) - (type-infer Δ Γ (Π (x : t_0) t_1) U) - ----------------- "DTR-Abstraction" - (type-infer Δ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))] - - [(type-infer Δ Γ t_0 U_1) - (type-infer Δ (Γ x : t_0) t U_2) - (unv-pred U_1 U_2 U) - ----------------- "DTR-Product" - (type-infer Δ Γ (Π (x : t_0) t) U)] - - [(type-infer Δ Γ e_0 t) - ;; Cannot rely on type-infer producing normal forms. - (where (Π (x_0 : t_0) t_1) (reduce Δ t)) - (type-check Δ Γ e_1 t_0) - (where t_3 (subst t_1 x_0 e_1)) - ----------------- "DTR-Application" - (type-infer Δ Γ (e_0 e_1) t_3)] - - [(where t (Δ-elim-type Δ D U)) - (type-infer Δ Γ t U_e) - ----------------- "DTR-Elim_D" - (type-infer Δ Γ (elim D U) t)]) - -(define-judgment-form tt-typingL - #:mode (type-check I I I I) - #:contract (type-check Δ Γ e t) - - [(type-infer Δ Γ e t_0) - (equivalent Δ t t_0) - ----------------- "DTR-Check" - (type-check Δ Γ e t)]) - -(module+ test - (check-holds (type-infer ∅ ∅ (Unv 0) (Unv 1))) - (check-holds (type-infer ∅ (∅ x : (Unv 0)) (Unv 0) (Unv 1))) - (check-holds (type-infer ∅ (∅ x : (Unv 0)) x (Unv 0))) - (check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_1 : (Unv 0)) - (Π (x_3 : x_0) x_1) (Unv 0))) - (check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) x_0 U_1)) - (check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2)) - (check-holds (unv-pred (Unv 0) (Unv 0) (Unv 0))) - (check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t)) - - (check-holds (type-check ∅ ∅ (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0)))) - (check-holds (type-check ∅ ∅ (λ (y : (Unv 0)) (λ (x : y) x)) - (Π (y : (Unv 0)) (Π (x : y) y)))) - - (check-equal? (list (term (Unv 1))) - (judgment-holds - (type-infer ∅ ((∅ x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))) - U) - U)) - ;; ---- Elim - ;; TODO: Clean up/Reorganize these tests - (check-true - (redex-match? tt-typingL - (in-hole Θ_m (((elim x_D U) e_D) e_P)) - (term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0))))) - (define Δtruth (term (∅ (truth : (Unv 0) ((T : truth)))))) - (check-holds (type-infer ,Δtruth ∅ truth (in-hole Ξ U))) - (check-holds (type-infer ,Δtruth ∅ T (in-hole Θ_ai truth))) - (check-holds (type-infer ,Δtruth ∅ (λ (x : truth) (Unv 1)) - (in-hole Ξ (Π (x : (in-hole Θ truth)) U)))) - - (check-telescope-equiv? - (term (Δ-methods-telescope ,Δtruth truth (λ (x : truth) (Unv 1)))) - (term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole))) - (check-holds (type-infer ,Δtruth ∅ (elim truth Type) t)) - (check-holds (type-check (∅ (truth : (Unv 0) ((T : truth)))) - ∅ - ((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0)) - T) - (Unv 1))) - (check-not-holds (type-check (∅ (truth : (Unv 0) ((T : truth)))) - ∅ - ((((elim truth (Unv 1)) Type) Type) T) - (Unv 1))) - (check-holds - (type-infer ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0)) U)) - (check-holds - (type-infer ∅ (∅ x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))) - t)) - (check-holds - (type-infer ,Δ ∅ nat (in-hole Ξ U))) - (check-holds - (type-infer ,Δ ∅ zero (in-hole Θ_ai nat))) - (check-holds - (type-infer ,Δ ∅ (λ (x : nat) nat) - (in-hole Ξ (Π (x : (in-hole Θ nat)) U)))) - (define-syntax-rule (nat-test syn ...) - (check-holds (type-check ,Δ syn ...))) - (nat-test ∅ (Π (x : nat) nat) (Unv 0)) - (nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat)) - (nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) zero) - (λ (x : nat) (λ (ih-x : nat) x))) zero) - nat) - (nat-test ∅ nat (Unv 0)) - (nat-test ∅ zero nat) - (nat-test ∅ s (Π (x : nat) nat)) - (nat-test ∅ (s zero) nat) - ;; TODO: Meta-function auto-currying and such - (check-holds - (type-infer ,Δ ∅ ((((elim nat (Unv 0)) (λ (x : nat) nat)) - zero) - (λ (x : nat) (λ (ih-x : nat) x))) - t)) - (nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat)) - zero) - (λ (x : nat) (λ (ih-x : nat) x))) - zero) - nat) - (nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) (s (s x))))) - zero) - nat) - (nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) - (s zero)) - (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero) - nat) - (nat-test (∅ n : nat) - (((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n) - nat) - (check-holds - (type-check (,Δ (bool : (Unv 0) ((btrue : bool) (bfalse : bool)))) - (∅ n2 : nat) - (((((elim nat (Unv 0)) (λ (x : nat) bool)) - btrue) - (λ (x : nat) (λ (ih-x : bool) bfalse))) - n2) - bool)) - (check-not-holds - (type-check ,Δ ∅ - ((((elim nat (Unv 0)) nat) (s zero)) zero) - nat)) - (define lam (term (λ (nat : (Unv 0)) nat))) - (check-equivalent - (Π (nat : (Unv 0)) (Unv 0)) - ,(car (judgment-holds (type-infer ,Δ0 ∅ ,lam t) t))) - (check-equivalent - (Π (nat : (Unv 0)) (Unv 0)) - ,(car (judgment-holds (type-infer ,Δ ∅ ,lam t) t))) - (check-equivalent - (Π (x : (Π (y : (Unv 0)) y)) nat) - ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (x : (Π (y : (Unv 0)) y)) (x nat)) - t) t))) - (check-equivalent - (Π (y : (Unv 0)) (Unv 0)) - ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (y : (Unv 0)) y) t) t))) - (check-equivalent - (Unv 0) - ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ - ((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat)) - (λ (y : (Unv 0)) y)) - t) t))) - (check-equal? - (list (term (Unv 0)) (term (Unv 1))) - (judgment-holds - (type-infer ,Δ4 ∅ (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))) - U) U)) - (check-holds - (type-check ,Δ4 (∅ S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))) - (check-holds - (type-check ,Δ4 (∅ S : (Unv 0)) - conj (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : P) (Π (y : Q) ((and P) Q))))))) - (check-holds - (type-check ,Δ4 (∅ S : (Unv 0)) S (Unv 0))) - (check-holds - (type-check ,Δ4 (∅ S : (Unv 0)) (conj S) - (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))) - (check-holds - (type-check ,Δ4 (∅ S : (Unv 0)) (conj S) - (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))) - (check-holds - (type-check ,Δ4 ∅ (λ (S : (Unv 0)) (conj S)) - (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))) - (check-holds - (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ - ((((conj true) true) tt) tt) - ((and true) true))) - (check-holds - (type-infer ,Δ4 ∅ and (in-hole Ξ U_D))) - (check-holds - (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ - ((((conj true) true) tt) tt) - (in-hole Θ and))) - (check-holds - (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ - (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))) - (in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P)))) - (check-holds - (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ - ((((((elim and (Unv 0)) - (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) - true)))) - (λ (A : (Unv 0)) - (λ (B : (Unv 0)) - (λ (a : A) - (λ (b : B) tt))))) - true) true) - ((((conj true) true) tt) tt)) - true)) - (check-true (Γ? (term (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))))) - (check-holds - (type-infer ,Δ4 ∅ and (in-hole Ξ U))) - (check-holds - (type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q)) - ab (in-hole Θ and))) - (check-true - (redex-match? tt-redL - (in-hole Ξ (Π (x : (in-hole Θ and)) U)) - (term (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))))) - (check-holds - (type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q)) - (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) - ((and B) A)))) - (in-hole Ξ (Π (x : (in-hole Θ and)) U)))) - (check-holds - (equivalent ,Δ4 - (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))) - (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0)))))) - (check-holds - (type-infer ,Δ4 ∅ - (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) - ((and B) A)))) - (in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P)))) - (check-holds - (type-check ,Δ4 - (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)) - ((((((elim and (Unv 0)) - (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) - ((and B) A))))) - (λ (A : (Unv 0)) - (λ (B : (Unv 0)) - (λ (a : A) - (λ (b : B) ((((conj B) A) b) a)))))) - P) Q) ab) - ((and Q) P))) - (check-holds - (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ - (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A)))) - (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))) - (check-holds - (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) - ((∅ A : Type) B : Type) - (conj B) - t)) - (check-holds - (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ - ((((((elim and (Unv 0)) - (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) - ((and B) A))))) - (λ (A : (Unv 0)) - (λ (B : (Unv 0)) - (λ (a : A) - (λ (b : B) ((((conj B) A) b) a)))))) - true) true) - ((((conj true) true) tt) tt)) - ((and true) true))) - (define gamma (term (∅ temp863 : pre))) - (check-holds (wf ,sigma ∅)) - (check-holds (wf ,sigma ,gamma)) - (check-holds - (type-infer ,sigma ,gamma (Unv 0) t)) - (check-holds - (type-infer ,sigma ,gamma pre t)) - (check-holds - (type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))) - (check-holds - (type-infer ,sigma ,gamma pre t)) - (check-holds - (type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))) - (check-holds - (type-infer ,sigma (,gamma x : false) false (in-hole Ξ U_D))) - (check-holds - (type-infer ,sigma (,gamma x : false) x (in-hole Θ false))) - (check-holds - (type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x)) - (in-hole Ξ (Π (x : (in-hole Θ false)) U)))) - (check-true - (redex-match? tt-typingL - ((in-hole Θ_m ((elim x_D U) e_P)) e_D) - (term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x))) - x)))) - (check-holds - (type-check ,sigma (,gamma x : false) - (((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x) - (Π (x : (Unv 0)) x))) - - ;; nat-equal? tests - (define zero? - (term ((((elim nat Type) (λ (x : nat) bool)) - true) - (λ (x : nat) (λ (x_ih : bool) false))))) - (check-holds - (type-check ,Δ ∅ ,zero? (Π (x : nat) bool))) - (check-equal? - (term (reduce ,Δ (,zero? zero))) - (term true)) - (check-equal? - (term (reduce ,Δ (,zero? (s zero)))) - (term false)) - (define ih-equal? - (term ((((elim nat Type) (λ (x : nat) bool)) - false) - (λ (x : nat) (λ (y : bool) (x_ih x)))))) - (check-holds - (type-check ,Δ (∅ x_ih : (Π (x : nat) bool)) - ,ih-equal? - (Π (x : nat) bool))) - (check-holds - (type-infer ,Δ ∅ nat (Unv 0))) - (check-holds - (type-infer ,Δ ∅ bool (Unv 0))) - (check-holds - (type-infer ,Δ ∅ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0)))) - (define nat-equal? - (term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool))) - ,zero?) - (λ (x : nat) (λ (x_ih : (Π (x : nat) bool)) - ,ih-equal?))))) - (check-holds - (type-check ,Δ (∅ nat-equal? : (Π (x-D«4158» : nat) ((λ (x«4159» : nat) (Π (x«4160» : nat) bool)) x-D«4158»))) - ((nat-equal? zero) zero) - bool)) - (check-holds - (type-check ,Δ ∅ - ,nat-equal? - (Π (x : nat) (Π (y : nat) bool)))) - (check-equal? - (term (reduce ,Δ ((,nat-equal? zero) (s zero)))) - (term false)) - (check-equal? - (term (reduce ,Δ ((,nat-equal? (s zero)) zero))) - (term false)) - - ;; == tests - (define Δ= (term (,Δ (== : (Π (A : (Unv 0)) (Π (a : A) (Π (b : A) (Unv 0)))) - ((refl : (Π (A : (Unv 0)) (Π (a : A) (((== A) a) a))))))))) - (check-true (Δ? Δ=)) - - (define refl-elim - (term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((== - A1) - x1) - y1)) - nat))))) - (λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))) - (check-holds - (type-check ,Δ= ∅ ,refl-elim nat)) - (check-true - (redex-match? - tt-redL - (Δ (in-hole E (in-hole Θ ((elim x_D U) e_P)))) - (term (,Δ= ,refl-elim)))) - (check-true - (redex-match? - tt-redL - (in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m) - (term (((((hole - (λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))) - (check-telescope-equiv? - (term (Δ-ref-parameter-Ξ ,Δ= ==)) - (term (Π (A : Type) (Π (a : A) (Π (b : A) hole))))) - (check-equal? - (term (reduce ,Δ= ,refl-elim)) - (term zero))) diff --git a/info.rkt b/info.rkt deleted file mode 100644 index 7fc064f..0000000 --- a/info.rkt +++ /dev/null @@ -1,8 +0,0 @@ -#lang info -(define collection "cur") -(define deps '("base" "rackunit-lib" ("redex-lib" #:version "1.11"))) -(define build-deps '("scribble-lib" "racket-doc" "sandbox-lib")) -(define scribblings '(("scribblings/cur.scrbl" (multi-page)))) -(define pkg-desc "Dependent types with parenthesis and meta-programming.") -(define version "0.1") -(define pkg-authors '(wilbowma)) diff --git a/stdlib/bool.rkt b/stdlib/bool.rkt deleted file mode 100644 index 61cc897..0000000 --- a/stdlib/bool.rkt +++ /dev/null @@ -1,41 +0,0 @@ -#lang s-exp "../cur.rkt" -(require "sugar.rkt") -(provide Bool true false if not and or) - -(data Bool : Type - (true : Bool) - (false : Bool)) - -(define-syntax-rule (if t s f) - (match t - [true s] - [false f])) - -(define (not (x : Bool)) (if x false true)) - -(module+ test - (require rackunit) - (check-equal? (not true) false) - (check-equal? (not false) true)) - -(define (and (x : Bool) (y : Bool)) - (if x - y - (not y))) - -(module+ test - (check-equal? (and true false) false) - (check-equal? (and false false) true) - (check-equal? (and false true) false) - (check-equal? (and true true) true)) - -(define (or (x : Bool) (y : Bool)) - (if x - true - y)) - -(module+ test - (check-equal? (or true false) true) - (check-equal? (or false false) false) - (check-equal? (or false true) true) - (check-equal? (or true true) true)) diff --git a/stdlib/maybe.rkt b/stdlib/maybe.rkt deleted file mode 100644 index 2550871..0000000 --- a/stdlib/maybe.rkt +++ /dev/null @@ -1,29 +0,0 @@ -#lang s-exp "../cur.rkt" -(require "sugar.rkt") -(provide Maybe none some some/i) - -(data Maybe : (forall (A : Type) Type) - (none : (forall (A : Type) (Maybe A))) - (some : (forall* (A : Type) (a : A) (Maybe A)))) - -(define-syntax (some/i syn) - (syntax-case syn () - [(_ a) - (let ([a-ty (type-infer/syn #'a)]) - #`(some #,a-ty a))])) - -(module+ test - (require rackunit "bool.rkt") - (check-equal? - (some/i true) - (some Bool true)) - ;; Disabled until #22 fixed - #;(check-equal? - (case* Maybe Type (some Bool true) (Bool) - (lambda* (A : Type) (x : (Maybe A)) A) - [(none (A : Type)) IH: () - false] - [(some (A : Type) (x : A)) IH: () - ;; TODO: Don't know how to use dependency yet - (if x true false)]) - true))