Fixed inductive elimination. Closes #33

Previously, inductive elimination could fail due to non-determinisic
matching in the reduction-relation and reduction over open terms via
reflection.
This commit is contained in:
William J. Bowman 2016-01-13 20:41:13 -05:00
parent 0596e4a0f6
commit 8c149fcef2
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A
3 changed files with 228 additions and 96 deletions

View File

@ -2,6 +2,7 @@
(require
racket/function
racket/list
redex/reduction-semantics)
(provide
@ -107,11 +108,13 @@
;; Returns the inductively defined type that x constructs
;; NB: Depends on clause order
(define-metafunction ttL
Δ-key-by-constructor : Δ x -> x
Δ-key-by-constructor : Δ x -> x or #f
[(Δ-key-by-constructor (Δ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c)
x]
[(Δ-key-by-constructor (Δ (x_1 : t_1 any)) x)
(Δ-key-by-constructor Δ x)])
(Δ-key-by-constructor Δ x)]
[(Δ-key-by-constructor Δ x)
#f])
;; Returns the constructor map for the inductively defined type x_D in the signature Δ
(define-metafunction ttL
@ -139,6 +142,17 @@
[(Δ-ref-constructors (Δ (x_1 : t_1 any)) x_D)
(Δ-ref-constructors Δ x_D)])
;; TODO: Mix of pure Redex/escaping to Racket sometimes is getting confusing.
;; TODO: Justify, or stop.
;; Return the number of constructors that D has
(define-metafunction ttL
Δ-constructor-count : Δ D -> natural or #f
[(Δ-constructor-count Δ D)
,(length (term (x ...)))
(where (x ...) (Δ-ref-constructors Δ D))]
[(Δ-constructor-count Δ D) #f])
;; NB: Depends on clause order
(define-metafunction ttL
sequence-index-of : any (any ...) -> natural
@ -170,14 +184,6 @@
;; TODO: Might be worth it to actually maintain the above bijections, for performance reasons.
;; Return the parameters of x_D as a telescope Ξ
;; TODO: Define generic traversals of Δ and Γ ?
(define-metafunction tt-ctxtL
Δ-ref-parameter-Ξ : Δ x -> Ξ
[(Δ-ref-parameter-Ξ (Δ (x_D : (in-hole Ξ U) any)) x_D)
Ξ]
[(Δ-ref-parameter-Ξ (Δ (x_1 : t_1 any)) x_D)
(Δ-ref-parameter-Ξ Δ x_D)])
;; Applies the term t to the telescope Ξ.
;; TODO: Test
@ -210,6 +216,20 @@
[(Θ-length hole) 0]
[(Θ-length (Θ e)) ,(add1 (term (Θ-length Θ)))])
;; Convert an apply context to a sequence of terms
(define-metafunction tt-ctxtL
Θ->list : Θ -> (e ...)
[(Θ->list hole) ()]
[(Θ->list (Θ e))
(e_r ... e)
(where (e_r ...) (Θ->list Θ))])
(define-metafunction tt-ctxtL
list->Θ : (e ...) -> Θ
[(list->Θ ()) hole]
[(list->Θ (e e_r ...))
(in-hole (list->Θ (e_r ...)) (hole e))])
;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole.
(define-metafunction tt-ctxtL
Θ-ref : Θ natural -> e or #f
@ -220,6 +240,26 @@
;;; ------------------------------------------------------------------------
;;; Computing the types of eliminators
;; Return the parameters of x_D as a telescope Ξ
;; TODO: Define generic traversals of Δ and Γ ?
(define-metafunction tt-ctxtL
Δ-ref-parameter-Ξ : Δ x -> Ξ or #f
[(Δ-ref-parameter-Ξ (Δ (x_D : (in-hole Ξ U) any)) x_D)
Ξ]
[(Δ-ref-parameter-Ξ (Δ (x_1 : t_1 any)) x_D)
(Δ-ref-parameter-Ξ Δ x_D)]
[(Δ-ref-parameter-Ξ Δ x)
#f])
;; Return the number of parameters of D
(define-metafunction tt-ctxtL
Δ-parameter-count : Δ D -> natural or #f
[(Δ-parameter-count Δ D)
(Ξ-length Ξ)
(where Ξ (Δ-ref-parameter-Ξ Δ D))]
[(Δ-parameter-count Δ D)
#f])
;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-telescope : Δ x x -> Ξ
@ -349,19 +389,6 @@
;; The types of the methods for this inductive.
(where Ξ_m (Δ-methods-telescope Δ x_D x_P))])
;; TODO: This might belong in the next section, since it's related to evaluation
;; Generate recursive applications of the eliminator for each inductive argument of type x_D.
;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
(define-metafunction tt-ctxtL
Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (in-hole Θ_i (hole (name t_i (in-hole Θ_r x_ci)))))
((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)
(in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P)))
(side-condition (memq (term x_ci) (term (Δ-ref-constructors Δ x_D))))]
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_nr) hole])
;;; ------------------------------------------------------------------------
;;; Dynamic semantics
;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the
@ -378,45 +405,136 @@
(define Θv? (redex-match? tt-redL Θv))
(define E? (redex-match? tt-redL E))
(define v? (redex-match? tt-redL v))
#|
| The elim form must appear applied like so:
| (elim D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
| Where:
| D is the inductive being eliminated
| U is the universe of the result of the motive
| v_P is the motive
| m_{0..n} are the methods
| p ... are the parameters of x_D
| c_i is a constructor of x_d
| a ... are the arguments to c_i
|
| Using contexts, this appears as (in-hole Θ ((elim D U) v_P))
|#
;;; NB: Next 3 meta-function Assume of Θ n constructors, j parameters, n+j+1-th element is discriminant
;; Given the apply context Θ in which an elimination of D with motive
;; v of type U appears, extract the parameters p ... from Θ.
(define-metafunction tt-redL
elim-parameters : Δ D Θ -> Θ
[(elim-parameters Δ D Θ)
;; Drop the methods, take the parameters
(list->Θ
,(take
(drop (term (Θ->list Θ)) (term (Δ-constructor-count Δ D)))
(term (Δ-parameter-count Δ D))))])
;; Given the apply context Θ in which an elimination of D with motive
;; v of type U appears, extract the methods m_0 ... m_n from Θ.
(define-metafunction tt-redL
elim-methods : Δ D Θ -> Θ
[(elim-methods Δ D Θ)
;; Take the methods, one for each constructor
(list->Θ
,(take
(term (Θ->list Θ))
(term (Δ-constructor-count Δ D))))])
;; Given the apply context Θ in which an elimination of D with motive
;; v of type U appears, extract the discriminant (c_i a ...) from Θ.
(define-metafunction tt-redL
elim-discriminant : Δ D Θ -> e
[(elim-discriminant Δ D Θ)
;; Drop the methods, the parameters, and take the last element
,(car
(drop
(drop (term (Θ->list Θ)) (term (Δ-constructor-count Δ D)))
(term (Δ-parameter-count Δ D))))])
;; Check that Θ is valid and ready to be evaluated as the arguments to an elim.
;; has length m = n + j + 1 and D has n constructors and j parameters,
;; and the 1 represents the discriminant.
;; discharges assumption for previous 3 meta-functions
(define-metafunction tt-redL
Θ-valid : Δ D Θ -> #t or #f
[(Θ-valid Δ D Θ)
#t
(where natural_m (Θ-length Θ))
(where natural_n (Δ-constructor-count Δ D))
(where natural_j (Δ-parameter-count Δ D))
(side-condition (= (+ (term natural_n) (term natural_j) 1) (term natural_m)))
;; As Cur allows reducing (through reflection) open terms,
;; check that the discriminant is a canonical form so that
;; reduction can proceed; otherwise not valid.
(where (in-hole Θ_i c_i) (elim-discriminant Δ D Θ))
(where D (Δ-key-by-constructor Δ c_i))]
[(Θ-valid Δ D Θ) #f])
(module+ test
(require rackunit)
(check-equal?
(term (Θ-length (((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)))
3)
(check-true
(term
(Θ-valid
(( (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat))))) (bool : (Unv 0) ((true : bool) (false : bool))))
nat
(((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)))))
(define-metafunction tt-ctxtL
is-inductive-argument : Δ D t -> #t or #f
;; Think this only works in call-by-value. A better solution would
;; be to check position of the argument w.r.t. the current
;; method. requires more arguments, and more though.q
[(is-inductive-argument Δ D (in-hole Θ c_i))
,(and (memq (term c_i) (term (Δ-ref-constructors Δ D))) #t)])
;; Generate recursive applications of the eliminator for each inductive argument of type x_D.
;; In more detail, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
;; TODO TTEESSSSSTTTTTTTT
(define-metafunction tt-ctxtL
Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ
;; NB: If metafunction fails, recursive
;; NB: elimination will be wrong. This will introduced extremely sublte bugs,
;; NB: inconsistency, failure of type safety, and other bad things.
;; NB: It should be tested and audited thoroughly
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (Θ_i t_i))
((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)
(in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P)))
(side-condition (term (is-inductive-argument Δ x_D t_i)))]
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (Θ_i t_i))
(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)]
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m hole)
hole])
(define tt-->
(reduction-relation tt-redL
(--> (Δ (in-hole E ((λ (x : t_0) t_1) t_2)))
(Δ (in-hole E (subst t_1 x t_2)))
-->β)
(--> (Δ (in-hole E (in-hole Θv ((elim x_D U) v_P))))
(--> (Δ (in-hole E (in-hole Θv ((elim D U) v_P))))
(Δ (in-hole E (in-hole Θ_r (in-hole Θv_i v_mi))))
#|
| The elim form must appear applied like so:
| (elim x_D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
| Where:
| x_D is the inductive being eliminated
| U is the universe of the result of the motive
| v_P is the motive
| m_{0..n} are the methods
| p ... are the parameters of x_D
| c_i is a constructor of x_d
| a ... are the arguments to c_i
| Unfortunately, Θ contexts turn all this inside out:
| TODO: Write better abstractions for this notation
|#
;; Check that Θv is valid to avoid capturing other things
(side-condition (term (Θ-valid Δ D Θv)))
;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and
;; the discriminant: the constructor x_ci applied to its argument Θv_i
(where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv)
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
;; arguments.
(side-condition (equal? (term (Θ-length Θv_p)) (term (Ξ-length (Δ-ref-parameter-Ξ Δ x_D)))))
;; Ensure x_ci is actually a constructor for x_D
(where (x_c* ...) (Δ-ref-constructors Δ x_D))
(side-condition (memq (term x_ci) (term (x_c* ...))))
;; There should be a number of methods equal to the number of constructors; to ensure E
;; doesn't capture methods and Θv_m doesn't capture other arguments
(side-condition (equal? (length (term (x_c* ...))) (term (Θ-length Θv_m))))
;; the discriminant: the constructor c_i applied to its argument Θv_i
(where Θv_p (elim-parameters Δ D Θv))
(where Θv_m (elim-methods Δ D Θv))
(where (in-hole Θv_i c_i) (elim-discriminant Δ D Θv))
;; Find the method for constructor x_ci, relying on the order of the arguments.
(where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ x_D x_ci)))
(where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ D c_i)))
;; Generate the inductive recursion
(where Θ_r (Δ-inductive-elim Δ x_D U v_P Θv_p Θv_m Θv_i))
(where Θ_r (Δ-inductive-elim Δ D U v_P Θv_p Θv_m Θv_i))
-->elim)))
(define-metafunction tt-redL
@ -430,13 +548,7 @@
[(reduce Δ e)
e_r
(where (_ e_r)
,(let ([r (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)])
;; Efficient check for (= (length r) 1)
;; NB: Check is overly aggressive and produces wrong error,
;; because not reducing under lambda.
#;(unless (null? (cdr r))
(error "Church-Rosser broken" r))
(car r)))])
,(car (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)))])
(define-judgment-form tt-redL
#:mode (equivalent I I I)

View File

@ -1,42 +1,20 @@
#lang s-exp "../cur.rkt"
(require
"bool.rkt"
"nat.rkt"
"maybe.rkt"
"sugar.rkt")
(provide
List
nil
cons
list-ref)
(data List : (forall (A : Type) Type)
(nil : (forall (A : Type) (List A)))
(cons : (forall* (A : Type) (->* A (List A) (List A)))))
(module+ test
(require rackunit)
(check-equal?
nil
nil)
(:: (cons Bool true (nil Bool)) (List Bool))
(:: (lambda* (A : Type) (a : A)
(ih-a : (-> Nat (Maybe A)))
(n : Nat)
(match n
[z (some A a)]
[(s (n-1 : Nat))
(ih-a n-1)]))
(forall* (A : Type) (a : A) (ih-a : (-> Nat (Maybe A)))
(n : Nat)
(Maybe A)))
(:: (lambda* (A : Type) (n : Nat) (none A)) (forall (A : Type) (-> Nat (Maybe A))))
(:: (elim List Type (lambda* (A : Type) (ls : (List A)) Nat)
(lambda (A : Type) z)
(lambda* (A : Type) (a : A) (ls : (List A)) (ih : Nat)
z)
Bool
(nil Bool))
Nat)
)
(define (list-ref (A : Type) (ls : (List A)))
;; TODO: case* would not type-check when used. Investigate/provide better errors for case*
(define list-ref
(elim
List
Type
@ -48,11 +26,4 @@
(match n
[z (some A a)]
[(s (n-1 : Nat))
(ih n-1)])))
A
ls))
(module+ test
(check-equal?
((list-ref Bool (cons Bool true (nil Bool))) z)
(some Bool true)))
(ih n-1)])))))

View File

@ -0,0 +1,49 @@
#lang cur
(require
rackunit
cur/stdlib/sugar
cur/stdlib/bool
cur/stdlib/nat
cur/stdlib/maybe
cur/stdlib/list)
(check-equal?
nil
nil)
;; NB HACK: Hack to register :: as a test-case.
;; TODO: Abstract this away
(check-equal?
(void)
(:: (cons Bool true (nil Bool)) (List Bool)))
(check-equal?
(void)
(:: (lambda* (A : Type) (a : A)
(ih-a : (-> Nat (Maybe A)))
(n : Nat)
(match n
[z (some A a)]
[(s (n-1 : Nat))
(ih-a n-1)]))
(forall* (A : Type) (a : A) (ih-a : (-> Nat (Maybe A)))
(n : Nat)
(Maybe A))))
(check-equal?
(void)
(:: (lambda* (A : Type) (n : Nat) (none A)) (forall (A : Type) (-> Nat (Maybe A)))))
(check-equal?
(void)
(:: (elim List Type (lambda* (A : Type) (ls : (List A)) Nat)
(lambda (A : Type) z)
(lambda* (A : Type) (a : A) (ls : (List A)) (ih : Nat)
z)
Bool
(nil Bool))
Nat))
(check-equal?
(void)
(:: list-ref (forall (A : Type) (->* (List A) Nat (Maybe A)))))
(check-equal?
((list-ref Bool (cons Bool true (nil Bool))) z)
(some Bool true))