Fixed rule names, working on type inference

This commit is contained in:
William J. Bowman 2014-07-12 23:46:02 +02:00
parent 0b004d9ccb
commit 944e9690dc

View File

@ -123,93 +123,37 @@
[(remove (Γ x : t) x) Γ]
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
#;(define-judgment-form dtracket-typingL
#:mode (synth I I O)
#:contract (synth Γ t t)
[(unv-ok U_0 U_1)
----------------- ;; DTR-SAxiom
(synth U_0 U_1)]
[(synth (remove Γ x) t U)
----------------- ;; DTR-SStart
(synth (Γ x : t) x t)]
[(synth Γ t t_1) (synth Γ t_0 U)
----------------- ;; DTR-SWeakening
(synth (Γ x : t_0) t t_1)]
[(check Γ e t)
----------------- ;; DTR-SSwitch
(synth Γ (e : t) t)]
[(synth Γ e_0 (Π (x : t_0) t_1))
(check Γ e_1 t_0)
----------------- ;; DTR-Application
(synth Γ (e_0 e_1) (subst t_1 x e_1))])
#;(define-judgment-form dtracket-typingL
#:mode (check I I I)
#:contract (check Γ t t)
[(check (Γ x : t_0) e t_1)
(synth Γ (Π (x : t_0) t_1) U)
----------------- ;; DTR-CAbstraction
(check Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(synth Γ t_0 U_1)
(synth (Γ x : t_0) t U_2)
(unv-kind U_1 U_2 U)
----------------- ;; DTR-CProduct
(check Γ (Π (x : t_0) t) U)]
[(check Γ t t_1) (synth Γ t_0 U)
----------------- ;; DTR-CWeakening
(check (Γ x : t_0) t t_1)]
[(synth Γ e t_1)
(synth Γ t_0 U)
(side-condition ,(term (first (apply-reduction-relation* ==β (term t_0) (term t_1)))))
----------------- ;; DTR-CConversion
(check Γ e t_0)]
[(synth Γ e t)
----------------- ;; DTR-CSwitch
(check Γ e t)])
(define-judgment-form dtracket-typingL
#:mode (types I I O)
#:contract (types Γ e t)
[(unv-ok U_0 U_1)
----------------- ;; DTR-Axiom
----------------- "DTR-Axiom"
(types U_0 U_1)]
[(where t (lookup Γ x))
(types (remove Γ x) t U)
----------------- ;; DTR-SStart
----------------- "DTR-Start"
(types Γ x t)]
[(types Γ t t_1) (types Γ t_0 U)
----------------- ;; DTR-Weakening
----------------- "DTR-Weakening"
(types (Γ x : t_0) t t_1)]
[(types Γ t_0 U_1)
(types (Γ x : t_0) t U_2)
(unv-kind U_1 U_2 U)
----------------- ;; DTR-Product
----------------- "DTR-Product"
(types Γ (Π (x : t_0) t) U)]
[(types Γ e_0 (Π (x : t_0) t_1))
(types Γ e_1 t_0)
----------------- ;; DTR-Application
----------------- "DTR-Application"
(types Γ (e_0 e_1) (subst t_1 x e_1))]
[(types (Γ x : t_0) e t_1)
(types Γ (Π (x : t_0) t_1) U)
----------------- ;; DTR-Abstraction
----------------- "DTR-Abstraction"
(types Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
;; TODO: beta-equiv
@ -221,7 +165,7 @@
(where t_0 (in-hole E t))
(where t_1 ,(car (apply-reduction-relation* ==β (term t_0))))
(types Γ t_1 U)
----------------- ;; DTR-Conversion
----------------- "DTR-Conversion"
(types Γ e t_1)])
(module+ test
(check-true (judgment-holds (types Type (Unv 0))))
@ -230,7 +174,9 @@
(check-true (judgment-holds (types (( x_0 : Type) x_1 : Type)
(Π (x_3 : x_0) x_1) Type)))
(check-true (judgment-holds (types (λ (x : Type) x) (Π (x : Type) Type)))))
(check-true (judgment-holds (types (λ (x : Type) x) (Π (x : Type) Type))))
(check-true (judgment-holds (types (λ (y : Type) (λ (x : y) x))
(Π (y : Type) (Π (x : y) y))))))
(define-judgment-form dtracket-typingL
#:mode (type-check I I I)
@ -243,5 +189,67 @@
;; Infer-core Language
;; A relaxed core where annotation are optional.
(define-extended-language dtracket-surfaceL dtracketL
(v ::= .... (λ x e) (Π x e))
(v ::= .... (λ x e) (Π t e))
(t e ::= .... (e : t)))
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
#;(define-judgment-form dtracket-typingL
#:mode (synth I I O)
#:contract (synth Γ t t)
[(unv-ok U_0 U_1)
----------------- "DTR-SAxiom"
(synth U_0 U_1)]
[(where t (lookup Γ x))
(synth (remove Γ x) t U)
----------------- "DTR-SStart"
(synth Γ x t)]
[(synth Γ t t_1) (synth Γ t_0 U)
----------------- "DTR-SWeakening"
(synth (Γ x : t_0) t t_1)]
[(check (Γ x : t_0) e t_1)
----------------- "DTR-SAbstraction"
(check Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(synth Γ e_0 (Π (x : t_0) t_1))
(check Γ e_1 t_0)
----------------- "DTR-SApplication"
(synth Γ (e_0 e_1) (subst t_1 x e_1))]
[(check Γ e t)
----------------- "DTR-SAnnotate"
(synth Γ (e : t) t)])
#;(define-judgment-form dtracket-typingL
#:mode (check I I I)
#:contract (check Γ t t)
[(check (Γ x : t_0) e t_1)
----------------- "DTR-Abstraction"
(check Γ (λ x e) (Π (x : t_0) t_1))]
[(synth Γ e t)
----------------- "DTR-SSynth"
(check Γ e t)])
#;(module+ test
(check-equal?
(list (term (Unv 0)))
(judgment-holds (synth Type U) U))
(check-equal?
(list (term Unv 0))
(judgment-holds (synth ( x : Type) Type U)))
(check-equal?
(list (term Type))
(judgment-holds (synth ( x : Type) x U)))
(check-equal?
(list (term Type))
(judgment-holds (synth (( x_0 : Type) x_1 : Type) (Π (x_3 : x_0) x_1) U)))
(check-equal?
(list ())
(judgment-holds (synth (λ (x : Type) x) (Π (x : Type) Type))))
(check-true (judgment-holds (types (λ (y : Type) (λ (x : y) x))
(Π (y : Type) (Π (x : y) y))))))