More thoughts

This commit is contained in:
William J. Bowman 2015-03-20 17:16:38 -04:00
parent 2718aaec42
commit b185150195

View File

@ -177,7 +177,7 @@
(Π (ms : (Π (n : nat) (Π (p : (P n)) (P (s n)))))
(Π (n : nat) (P n))))))))))
;; To implement elim-nat, I need case and fix:
#;(define elim-nat (P : ...) (mz : ...) (ms : ...)
#;(define elim-nat (P : ...) (mz : ...) (ms : ...)
(fix (f : (n : nat) -> (P n))
(case n
zero mz
@ -192,6 +192,26 @@
;; single-arity function are becoming a burden. Perhaps I need a
;; new abstraction ... Telescopes?
;; elim-nat (t : nat) (P : ...) (mz : (P zero)) (ms : (n : nat) -> P n -> P (suc n))
;; (elim-nat t) => (m_i Ψ)
;; (where (_ ... (m_i t) _ ...)
;; ((mz z) (ms s)))
;; (where (_ ... (m_i : (Ψ -> P t)) _ ...)
;; ((mz : (P zero))
;; (ms : (... -> P (suc n)))))
;; (Telescope) Ψ ::= hole (Π (x : t) Ψ)
;;
;; elim-D : (x : D) (P : (in-hole Ψ U)) (m_i : t_i) ... (P x)
;; (fresh x P m_i)
;; (where (c_i ...) (constructors-for D))
;; (where ((Δ_i ...)) ())
;; (where (t_i ...)
;; (-> (x )))
;; ... trying to do this amounts to trying to give a single type and
;; rule to elim-D, which is basically the same thing as case. So
;; might as well just use case?
(define Σ0 (term ))
(define Σ2 Σ)