Fixed reduction of eliminators like (elim ==)

Fixed eliminator reduction for eliminators of inductive types whose
constructors do not have the same parameters as their type. The
canonical example is ==, which has 3 parameters, but whose constructor
refl only has two.
This commit is contained in:
William J. Bowman 2015-09-26 00:17:19 -04:00
parent 8aabbc219b
commit b2d042e4a6
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A
2 changed files with 94 additions and 37 deletions

View File

@ -298,12 +298,24 @@
#:mode (length-match I I)
#:contract (length-match Θ (x ...))
[----------------------
(length-match hole ())]
(length-match hole ())]
[(length-match Θ (x_r ...))
----------------------
(length-match (Θ e) (x x_r ...))])
(define-judgment-form cic-redL
#:mode (telescope-match I I)
#:contract (telescope-match Θ Ξ)
[---------------------------
(telescope-match hole hole)]
[(telescope-match Θ Ξ)
---------------------------
(telescope-match (Θ e) (Π (x : t) Ξ))])
(define cic-->
(reduction-relation cic-redL
(--> (Σ (in-hole E ((any (x : t_0) t_1) t_2)))
@ -313,16 +325,16 @@
(Σ (in-hole E (in-hole Θ_r (in-hole Θ_i e_mi))))
#|
| The elim form must appear applied like so:
| (elim x_D U e_P m_0 ... m_i m_j ... m_n p ... (c_i p ... a ...))
| (elim x_D U e_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
| Where:
| x_D is the inductive being eliminated
| U is the sort of the motive
| U is the universe of the result of the motive
| e_P is the motive
| m_{0..n} are the methods
| p ... are the parameters of x_D
| c_i is a constructor of x_d
| a ... are the non-parameter arguments to c_i
| a ... are the arguments to c_i
| Unfortunately, Θ contexts turn all this inside out:
| TODO: Write better abstractions for this notation
|#
@ -330,11 +342,7 @@
Θ)
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
;; arguments.
(where Ξ (parameters-of Σ x_D))
(judgment-holds (telescope-types Σ Θ_p Ξ))
;; Ensure the constructor x_ci is applied to Θ_p first, then some arguments Θ_a
(where (in-hole Θ_a Θ_p)
Θ_i)
(judgment-holds (telescope-match Θ_p (parameters-of Σ x_D)))
;; Ensure x_ci is actually a constructor for x_D
(where ((x_c* : t_c*) ...)
(constructors-for Σ x_D))
@ -346,7 +354,7 @@
;; Find the method for constructor x_ci, relying on the order of the arguments.
(where e_mi (method-lookup Σ x_D x_ci Θ_m))
;; Generate the inductive recursion
(where Θ_r (elim-recur x_D U e_P Θ_m Θ_m Θ_i (x_c* ...)))
(where Θ_r (elim-recur x_D U e_P (in-hole Θ_p Θ_m) Θ_m Θ_i (x_c* ...)))
-->elim)))
(define-metafunction cic-redL
@ -561,36 +569,35 @@
(inductive-args x_D Φ_1)])
;; Returns the methods required for eliminating the inductively
;; defined type x_D, whose parameters/indices are Ξ_pi and whose
;; constructors are ((x_ci : t_ci) ...), with motive t_P.
;; defined type x_D, whose constructors are ((x_ci : t_ci) ...), with motive t_P.
(define-metafunction cic-redL
methods-for : x Ξ t ((x : t) ...) -> Ξ
[(methods-for x_D Ξ_pi t_P ()) hole]
[(methods-for x_D Ξ_pi t_P ((x_ci : (in-hole Ξ_pi (in-hole Φ (in-hole Θ x_D))))
methods-for : x t ((x : t) ...) -> Ξ
[(methods-for x_D t_P ()) hole]
[(methods-for x_D t_P ((x_ci : (in-hole Φ (in-hole Θ x_D)))
(x_c : t) ...))
(Π (x_mi : (in-hole Ξ_pi (in-hole Φ (in-hole Φ_h
;; NB: Manually reducing types because no conversion
;; NB: rule
;; TODO: Thread through Σ for reduce
;; TODO: Might be able to remove this now that I have
;; TODO: equivalence in type-check
(reduce ((in-hole Θ t_P) (apply-telescopes x_ci (Ξ_pi Φ))))))))
(methods-for x_D Ξ_pi t_P ((x_c : t) ...)))
(Π (x_mi : (in-hole Φ (in-hole Φ_h
;; NB: Manually reducing types because no conversion
;; NB: rule
;; TODO: Thread through Σ for reduce
;; TODO: Might be able to remove this now that I have
;; TODO: equivalence in type-check
(reduce ((in-hole Θ t_P) (apply-telescope x_ci Φ))))))
(methods-for x_D t_P ((x_c : t) ...)))
(where Φ_h (hypotheses-for x_D t_P (inductive-args x_D Φ)))
;; NB: Lol hygiene
(where x_mi ,(string->symbol (format "~a-~a" 'm (term x_ci))))])
(module+ test
(check-equal?
(term (methods-for nat hole P ((zero : nat) (s : (Π (x : nat) nat)))))
(term (methods-for nat P ((zero : nat) (s : (Π (x : nat) nat)))))
(term (Π (m-zero : (P zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
hole))))
(check-equal?
(term (methods-for nat hole (λ (x : nat) nat) ((zero : nat) (s : (Π (x : nat) nat)))))
(term (methods-for nat (λ (x : nat) nat) ((zero : nat) (s : (Π (x : nat) nat)))))
(term (Π (m-zero : nat) (Π (m-s : (Π (x : nat) (Π (ih-x : nat) nat)))
hole))))
(check-equal?
(term (methods-for and (Π (A : Type) (Π (B : Type) hole))
(term (methods-for and
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
((conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
((and A) B)))))))))
@ -601,7 +608,7 @@
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
(check-true (redex-match? cicL ((x : t) ...) (term ())))
(check-equal?
(term (methods-for false hole (λ (y : false) (Π (x : Type) x))
(term (methods-for false (λ (y : false) (Π (x : Type) x))
()))
(term hole)))
@ -621,7 +628,6 @@
(term (constructor-of ,Σ s))
(term nat)))
;; TODO: inlined at least in type-infer
;; TODO: Define generic traversals of Σ and Γ ?
(define-metafunction cic-redL
parameters-of : Σ x -> Ξ
@ -629,6 +635,13 @@
Ξ]
[(parameters-of (Σ (x_1 : t_1 ((x : t) ...))) x_D)
(parameters-of Σ x_D)])
(module+ test
(check-equal?
(term (parameters-of ,Σ nat))
(term hole))
(check-equal?
(term (parameters-of ,Σ4 and))
(term (Π (A : Type) (Π (B : Type) hole)))))
;; Returns the constructors for the inductively defined type x_D in
;; the signature Σ
@ -669,7 +682,7 @@
(term ((hole zero) (λ (x : nat) x)))))
(check-holds
(telescope-types ,Σ (hole zero)
(methods-for nat hole
(methods-for nat
(λ (x : nat) nat)
((zero : nat)))))
(check-holds
@ -679,20 +692,20 @@
(telescope-types ,Σ
((hole zero)
(λ (x : nat) (λ (ih-x : nat) x)))
(methods-for nat hole
(methods-for nat
(λ (x : nat) nat)
(constructors-for ,Σ nat))))
(check-holds
(telescope-types (,Σ4 (true : (Unv 0) ((tt : true))))
(hole (λ (A : (Unv 0)) (λ (B : (Unv 0))
(λ (a : A) (λ (b : B) tt)))))
(methods-for and (Π (A : Type) (Π (B : Type) hole))
(methods-for and
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
(constructors-for ,Σ4 and))))
(check-holds
(telescope-types ,sigma ( x : false)
hole
(methods-for false hole (λ (y : false) (Π (x : Type) x))
(methods-for false (λ (y : false) (Π (x : Type) x))
()))))
;; TODO: Bi-directional and inference?
@ -733,7 +746,8 @@
----------------- "DTR-Abstraction"
(type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(type-infer Σ Γ x_D (in-hole Ξ U_D))
[(type-infer Σ Γ x_D (in-hole Ξ t_D))
(where Ξ (parameters-of Σ x_D))
;; A fresh name to bind the discriminant
(where x (fresh-x Σ Γ x_D Ξ))
;; The telescope (∀ a -> ... -> (D a ...) hole), i.e.,
@ -743,7 +757,7 @@
;; A fresh name for the motive
(where x_P (fresh-x Σ Γ x_D Ξ Ξ_P*D x))
;; The types of the methods for this inductive.
(where Ξ_m (methods-for x_D Ξ x_P (constructors-for Σ x_D)))
(where Ξ_m (methods-for x_D x_P (constructors-for Σ x_D)))
----------------- "DTR-Elim_D"
(type-infer Σ Γ ((elim x_D) U)
;; The type of ((elim x_D) U) is something like:
@ -807,10 +821,10 @@
(check-holds (type-infer ,Σtruth (λ (x : truth) (Unv 1))
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
(check-equal?
(term (methods-for truth hole (λ (x : truth) (Unv 1)) ((T : truth))))
(term (methods-for truth (λ (x : truth) (Unv 1)) ((T : truth))))
(term (Π (m-T : (Unv 1)) hole)))
(check-holds (telescope-types ,Σtruth (hole (Unv 0))
(methods-for truth hole
(methods-for truth
(λ (x : truth) (Unv 1))
((T : truth)))))
(check-holds (type-infer ,Σtruth ((elim truth) Type) t))
@ -1076,4 +1090,36 @@
(term false))
(check-equal?
(term (reduce ,Σ ((,nat-equal? (s zero)) zero)))
(term false)))
(term false))
;; == tests
(define Σ= (term (,Σ (== : (Π (A : (Unv 0)) (Π (a : A) (Π (b : A) (Unv 0))))
((refl : (Π (A : (Unv 0)) (Π (a : A) (((== A) a) a)))))))))
(check-true (Σ? Σ=))
(define refl-elim
(term ((((((((elim ==) (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
A1)
x1)
y1))
nat)))))
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))
(check-holds
(type-check ,Σ= ,refl-elim nat))
(check-true
(redex-match?
cic-redL
(Σ (in-hole E (in-hole Θ (((elim x_D) U) e_P))))
(term (,Σ= ,refl-elim))))
(check-true
(redex-match?
cic-redL
(in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m)
(term (((((hole
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))))
(check-equal?
(term (parameters-of ,Σ= ==))
(term (Π (A : Type) (Π (a : A) (Π (b : A) hole)))))
(check-equal?
(term (reduce ,Σ= ,refl-elim))
(term zero)))

View File

@ -84,3 +84,14 @@
(data == : (forall* (A : Type) (x : A) (-> A Type))
(refl : (forall* (A : Type) (x : A) (== A x x))))
(module+ test
(require rackunit "bool.rkt" "nat.rkt")
(check-equal?
(elim == Type (λ* (A : Type) (x : A) (y : A) (p : (== A x y)) Nat)
(λ* (A : Type) (x : A) z)
Bool
true
true
(refl Bool true))
z))