Fixed notion of values, and cached reduction
* Made the primitive form of elim (elim t_0 t_1), allowing this form to be considered a value when t_0 and t_1 are values. * Moved definition of values to reduction language, and fixed it. This fixed issues with unique decomposition, and thus fixed reduction of eliminators. * Enabled caching in apply-reduction-relation* to speed up results of recursive calls.
This commit is contained in:
parent
0807128f9e
commit
b95de692b9
|
@ -35,14 +35,11 @@
|
||||||
(i ::= natural)
|
(i ::= natural)
|
||||||
(U ::= (Unv i))
|
(U ::= (Unv i))
|
||||||
(x ::= variable-not-otherwise-mentioned)
|
(x ::= variable-not-otherwise-mentioned)
|
||||||
(v ::= (Π (x : t) t) (λ (x : t) t) elim x U capp)
|
(t e ::= (Π (x : t) t) (λ (x : t) t) (elim t t) x U (t t)))
|
||||||
(capp ::= (x v) (capp v))
|
|
||||||
(t e ::= v (t t)))
|
|
||||||
|
|
||||||
(define x? (redex-match? cicL x))
|
(define x? (redex-match? cicL x))
|
||||||
(define t? (redex-match? cicL t))
|
(define t? (redex-match? cicL t))
|
||||||
(define e? (redex-match? cicL e))
|
(define e? (redex-match? cicL e))
|
||||||
(define v? (redex-match? cicL v))
|
|
||||||
(define U? (redex-match? cicL U))
|
(define U? (redex-match? cicL U))
|
||||||
|
|
||||||
(module+ test
|
(module+ test
|
||||||
|
@ -61,14 +58,8 @@
|
||||||
(check-true (U? (term (Unv 0))))
|
(check-true (U? (term (Unv 0))))
|
||||||
(check-true (U? (term Type)))
|
(check-true (U? (term Type)))
|
||||||
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
|
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||||
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
|
|
||||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))))
|
||||||
(check-true
|
|
||||||
(v? (term (refl Nat))))
|
|
||||||
(check-true
|
|
||||||
(v? (term ((refl Nat) z))))
|
|
||||||
)
|
|
||||||
|
|
||||||
;; 'A'
|
;; 'A'
|
||||||
;; Types of Universes
|
;; Types of Universes
|
||||||
|
@ -104,10 +95,10 @@
|
||||||
#:contract (α-equivalent t t)
|
#:contract (α-equivalent t t)
|
||||||
|
|
||||||
[----------------- "α-x"
|
[----------------- "α-x"
|
||||||
(α-equivalent x x)]
|
(α-equivalent x x)]
|
||||||
|
|
||||||
[----------------- "α-U"
|
[----------------- "α-U"
|
||||||
(α-equivalent U U)]
|
(α-equivalent U U)]
|
||||||
|
|
||||||
[(α-equivalent t_1 (subst t_3 x_1 x_0))
|
[(α-equivalent t_1 (subst t_3 x_1 x_0))
|
||||||
(α-equivalent t_0 t_2)
|
(α-equivalent t_0 t_2)
|
||||||
|
@ -125,8 +116,8 @@
|
||||||
(check-holds (α-equivalent (λ (x : A) x) (λ (y : A) y))))
|
(check-holds (α-equivalent (λ (x : A) x) (λ (y : A) y))))
|
||||||
|
|
||||||
(define-metafunction cicL
|
(define-metafunction cicL
|
||||||
fresh-x : any ... -> x
|
fresh-x : any ... -> x
|
||||||
[(fresh-x any ...) ,(variable-not-in (term (any ...)) (term x))])
|
[(fresh-x any ...) ,(variable-not-in (term (any ...)) (term x))])
|
||||||
|
|
||||||
;; NB: Substitution is hard
|
;; NB: Substitution is hard
|
||||||
;; NB: Copy and pasted from Redex examples
|
;; NB: Copy and pasted from Redex examples
|
||||||
|
@ -156,7 +147,7 @@
|
||||||
(term (x_0 t_0 x t t_1))
|
(term (x_0 t_0 x t t_1))
|
||||||
(term x_0)))]
|
(term x_0)))]
|
||||||
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
|
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
|
||||||
[(subst elim x t) elim])
|
[(subst (elim e_0 e_1) x t) (elim (subst e_0 x t) (subst e_1 x t))])
|
||||||
(module+ test
|
(module+ test
|
||||||
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
|
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
|
||||||
(check-holds
|
(check-holds
|
||||||
|
@ -175,23 +166,32 @@
|
||||||
;; TODO: I think a lot of things can be simplified if I rethink how
|
;; TODO: I think a lot of things can be simplified if I rethink how
|
||||||
;; TODO: model contexts, telescopes, and such.
|
;; TODO: model contexts, telescopes, and such.
|
||||||
(define-extended-language cic-redL cicL
|
(define-extended-language cic-redL cicL
|
||||||
|
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim.
|
||||||
|
;; TODO: Perhaps (elim x U) should step to an eta-expanded version of elim
|
||||||
|
(v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U)))
|
||||||
;; call-by-value, plus reduce under Π (helps with typing checking)
|
;; call-by-value, plus reduce under Π (helps with typing checking)
|
||||||
(E ::= hole (v E) (E e)
|
(E ::= hole (E e) (v E)
|
||||||
(Π (x : (in-hole Θ x)) E)
|
|
||||||
(Π (x : v) E)
|
(Π (x : v) E)
|
||||||
(Π (x : E) e))
|
(Π (x : E) e))
|
||||||
|
;; TODO: Σ should probably be moved to cicL, since elim is there.
|
||||||
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
|
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
|
||||||
(Σ ::= ∅ (Σ (x : t ((x : t) ...))))
|
(Σ ::= ∅ (Σ (x : t ((x : t) ...))))
|
||||||
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
|
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
|
||||||
;; NB: Does an apply context correspond to a substitution (γ)?
|
;; NB: Does an apply context correspond to a substitution (γ)?
|
||||||
(Θ ::= hole (Θ e))) ;;(Apply context)
|
(Θ ::= hole (Θ e)) ;;(Apply context)
|
||||||
|
(Θv ::= hole (Θv v)))
|
||||||
(define Σ? (redex-match? cic-redL Σ))
|
(define Σ? (redex-match? cic-redL Σ))
|
||||||
(define Ξ? (redex-match? cic-redL Ξ))
|
(define Ξ? (redex-match? cic-redL Ξ))
|
||||||
(define Φ? (redex-match? cic-redL Φ))
|
(define Φ? (redex-match? cic-redL Φ))
|
||||||
(define Θ? (redex-match? cic-redL Θ))
|
(define Θ? (redex-match? cic-redL Θ))
|
||||||
|
(define Θv? (redex-match? cic-redL Θv))
|
||||||
(define E? (redex-match? cic-redL E))
|
(define E? (redex-match? cic-redL E))
|
||||||
|
(define v? (redex-match? cic-redL v))
|
||||||
|
|
||||||
(module+ test
|
(module+ test
|
||||||
|
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||||
|
(check-true (v? (term (refl Nat))))
|
||||||
|
(check-true (v? (term ((refl Nat) z))))
|
||||||
;; TODO: Rename these signatures, and use them in all future tests.
|
;; TODO: Rename these signatures, and use them in all future tests.
|
||||||
(define Σ (term ((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))
|
(define Σ (term ((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||||
(bool : (Unv 0) ((true : bool) (false : bool))))))
|
(bool : (Unv 0) ((true : bool) (false : bool))))))
|
||||||
|
@ -231,7 +231,6 @@
|
||||||
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
|
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
|
||||||
|
|
||||||
;; TODO: Test
|
;; TODO: Test
|
||||||
;; TODO: Isn't this just plug?
|
|
||||||
;; TODO: Maybe this should be called "apply-to-telescope"
|
;; TODO: Maybe this should be called "apply-to-telescope"
|
||||||
(define-metafunction cic-redL
|
(define-metafunction cic-redL
|
||||||
apply-telescope : t Ξ -> t
|
apply-telescope : t Ξ -> t
|
||||||
|
@ -274,7 +273,7 @@
|
||||||
(in-hole Θ_i (hole (in-hole Θ_r x_ci)))
|
(in-hole Θ_i (hole (in-hole Θ_r x_ci)))
|
||||||
(x_c0 ... x_ci x_c1 ...))
|
(x_c0 ... x_ci x_c1 ...))
|
||||||
((elim-recur x_D U e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...))
|
((elim-recur x_D U e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...))
|
||||||
(in-hole (Θ (in-hole Θ_r x_ci)) (((elim x_D) U) e_P)))]
|
(in-hole (Θ (in-hole Θ_r x_ci)) ((elim x_D U) e_P)))]
|
||||||
[(elim-recur x_D U e_P Θ Θ_i Θ_nr (x ...)) hole])
|
[(elim-recur x_D U e_P Θ Θ_i Θ_nr (x ...)) hole])
|
||||||
(module+ test
|
(module+ test
|
||||||
(check-true
|
(check-true
|
||||||
|
@ -285,7 +284,7 @@
|
||||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||||
(hole zero)
|
(hole zero)
|
||||||
(zero s)))
|
(zero s)))
|
||||||
(term (hole ((((((elim nat) Type) (λ (x : nat) nat))
|
(term (hole (((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s zero))
|
(s zero))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||||
zero))))
|
zero))))
|
||||||
|
@ -295,7 +294,7 @@
|
||||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||||
(hole (s zero))
|
(hole (s zero))
|
||||||
(zero s)))
|
(zero s)))
|
||||||
(term (hole ((((((elim nat) Type) (λ (x : nat) nat))
|
(term (hole (((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s zero))
|
(s zero))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||||
(s zero))))))
|
(s zero))))))
|
||||||
|
@ -327,16 +326,16 @@
|
||||||
(--> (Σ (in-hole E ((any (x : t_0) t_1) t_2)))
|
(--> (Σ (in-hole E ((any (x : t_0) t_1) t_2)))
|
||||||
(Σ (in-hole E (subst t_1 x t_2)))
|
(Σ (in-hole E (subst t_1 x t_2)))
|
||||||
-->β)
|
-->β)
|
||||||
(--> (Σ (in-hole E (in-hole Θ (((elim x_D) U) e_P))))
|
(--> (Σ (in-hole E (in-hole Θv ((elim x_D U) v_P))))
|
||||||
(Σ (in-hole E (in-hole Θ_r (in-hole Θ_i e_mi))))
|
(Σ (in-hole E (in-hole Θ_r (in-hole Θv_i v_mi))))
|
||||||
#|
|
#|
|
||||||
| The elim form must appear applied like so:
|
| The elim form must appear applied like so:
|
||||||
| (elim x_D U e_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
| (elim x_D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
||||||
|
|
|
|
||||||
| Where:
|
| Where:
|
||||||
| x_D is the inductive being eliminated
|
| x_D is the inductive being eliminated
|
||||||
| U is the universe of the result of the motive
|
| U is the universe of the result of the motive
|
||||||
| e_P is the motive
|
| v_P is the motive
|
||||||
| m_{0..n} are the methods
|
| m_{0..n} are the methods
|
||||||
| p ... are the parameters of x_D
|
| p ... are the parameters of x_D
|
||||||
| c_i is a constructor of x_d
|
| c_i is a constructor of x_d
|
||||||
|
@ -344,11 +343,11 @@
|
||||||
| Unfortunately, Θ contexts turn all this inside out:
|
| Unfortunately, Θ contexts turn all this inside out:
|
||||||
| TODO: Write better abstractions for this notation
|
| TODO: Write better abstractions for this notation
|
||||||
|#
|
|#
|
||||||
(where (in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m)
|
(where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m)
|
||||||
Θ)
|
Θv)
|
||||||
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
|
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
|
||||||
;; arguments.
|
;; arguments.
|
||||||
(judgment-holds (telescope-match Θ_p (parameters-of Σ x_D)))
|
(judgment-holds (telescope-match Θv_p (parameters-of Σ x_D)))
|
||||||
;; Ensure x_ci is actually a constructor for x_D
|
;; Ensure x_ci is actually a constructor for x_D
|
||||||
(where ((x_c* : t_c*) ...)
|
(where ((x_c* : t_c*) ...)
|
||||||
(constructors-for Σ x_D))
|
(constructors-for Σ x_D))
|
||||||
|
@ -356,11 +355,11 @@
|
||||||
(x_c* ...))
|
(x_c* ...))
|
||||||
;; There should be a number of methods equal to the number of constructors; to ensure E
|
;; There should be a number of methods equal to the number of constructors; to ensure E
|
||||||
;; doesn't capture methods and Θ_m doesn't capture other arguments
|
;; doesn't capture methods and Θ_m doesn't capture other arguments
|
||||||
(judgment-holds (length-match Θ_m (x_c* ...)))
|
(judgment-holds (length-match Θv_m (x_c* ...)))
|
||||||
;; Find the method for constructor x_ci, relying on the order of the arguments.
|
;; Find the method for constructor x_ci, relying on the order of the arguments.
|
||||||
(where e_mi (method-lookup Σ x_D x_ci Θ_m))
|
(where v_mi (method-lookup Σ x_D x_ci Θv_m))
|
||||||
;; Generate the inductive recursion
|
;; Generate the inductive recursion
|
||||||
(where Θ_r (elim-recur x_D U e_P (in-hole Θ_p Θ_m) Θ_m Θ_i (x_c* ...)))
|
(where Θ_r (elim-recur x_D U v_P (in-hole Θv_p Θv_m) Θv_m Θv_i (x_c* ...)))
|
||||||
-->elim)))
|
-->elim)))
|
||||||
|
|
||||||
(define-metafunction cic-redL
|
(define-metafunction cic-redL
|
||||||
|
@ -373,7 +372,8 @@
|
||||||
reduce : Σ e -> e
|
reduce : Σ e -> e
|
||||||
[(reduce Σ e)
|
[(reduce Σ e)
|
||||||
e_r
|
e_r
|
||||||
(where (_ e_r) ,(let ([r (apply-reduction-relation* cic--> (term (Σ e)))])
|
(where (_ e_r) ,(let ([r (apply-reduction-relation* cic--> (term (Σ e))
|
||||||
|
#:cache-all? #t)])
|
||||||
(unless (null? (cdr r))
|
(unless (null? (cdr r))
|
||||||
(error "Church-rosser broken" r))
|
(error "Church-rosser broken" r))
|
||||||
(car r)))])
|
(car r)))])
|
||||||
|
@ -386,19 +386,19 @@
|
||||||
(term (Π (x : t) (Unv 0))))
|
(term (Π (x : t) (Unv 0))))
|
||||||
(check-equal? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
(check-equal? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
||||||
(term (Π (x : t) (x x))))
|
(term (Π (x : t) (x x))))
|
||||||
(check-equal? (term (reduce ,Σ ((((((elim nat) Type) (λ (x : nat) nat))
|
(check-equal? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s zero))
|
(s zero))
|
||||||
(λ (x : nat) (λ (ih-x : nat)
|
(λ (x : nat) (λ (ih-x : nat)
|
||||||
(s (s x)))))
|
(s (s x)))))
|
||||||
zero)))
|
zero)))
|
||||||
(term (s zero)))
|
(term (s zero)))
|
||||||
(check-equal? (term (reduce ,Σ ((((((elim nat) Type) (λ (x : nat) nat))
|
(check-equal? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s zero))
|
(s zero))
|
||||||
(λ (x : nat) (λ (ih-x : nat)
|
(λ (x : nat) (λ (ih-x : nat)
|
||||||
(s (s x)))))
|
(s (s x)))))
|
||||||
(s zero))))
|
(s zero))))
|
||||||
(term (s (s zero))))
|
(term (s (s zero))))
|
||||||
(check-equal? (term (reduce ,Σ ((((((elim nat) Type) (λ (x : nat) nat))
|
(check-equal? (term (reduce ,Σ (((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s zero))
|
(s zero))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||||
(s (s (s zero))))))
|
(s (s (s zero))))))
|
||||||
|
@ -406,21 +406,21 @@
|
||||||
|
|
||||||
(check-equal?
|
(check-equal?
|
||||||
(term (reduce ,Σ
|
(term (reduce ,Σ
|
||||||
((((((elim nat) Type) (λ (x : nat) nat))
|
(((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s (s zero)))
|
(s (s zero)))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||||
(s (s zero)))))
|
(s (s zero)))))
|
||||||
(term (s (s (s (s zero))))))
|
(term (s (s (s (s zero))))))
|
||||||
(check-equal?
|
(check-equal?
|
||||||
(term (step ,Σ
|
(term (step ,Σ
|
||||||
((((((elim nat) Type) (λ (x : nat) nat))
|
(((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s (s zero)))
|
(s (s zero)))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||||
(s (s zero)))))
|
(s (s zero)))))
|
||||||
(term
|
(term
|
||||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||||
(s zero))
|
(s zero))
|
||||||
((((((elim nat) Type) (λ (x : nat) nat))
|
(((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s (s zero)))
|
(s (s zero)))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||||
(s zero)))))
|
(s zero)))))
|
||||||
|
@ -428,7 +428,7 @@
|
||||||
(term (step ,Σ (step ,Σ
|
(term (step ,Σ (step ,Σ
|
||||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||||
(s zero))
|
(s zero))
|
||||||
((((((elim nat) Type) (λ (x : nat) nat))
|
(((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s (s zero)))
|
(s (s zero)))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||||
(s zero))))))
|
(s zero))))))
|
||||||
|
@ -437,7 +437,7 @@
|
||||||
((λ (ih-x1 : nat) (s ih-x1))
|
((λ (ih-x1 : nat) (s ih-x1))
|
||||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||||
zero)
|
zero)
|
||||||
((((((elim nat) Type) (λ (x : nat) nat))
|
(((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s (s zero)))
|
(s (s zero)))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||||
zero))))))
|
zero))))))
|
||||||
|
@ -804,8 +804,8 @@
|
||||||
;; The types of the methods for this inductive.
|
;; The types of the methods for this inductive.
|
||||||
(where Ξ_m (methods-for x_D x_P (constructors-for Σ x_D)))
|
(where Ξ_m (methods-for x_D x_P (constructors-for Σ x_D)))
|
||||||
----------------- "DTR-Elim_D"
|
----------------- "DTR-Elim_D"
|
||||||
(type-infer Σ Γ ((elim x_D) U)
|
(type-infer Σ Γ (elim x_D U)
|
||||||
;; The type of ((elim x_D) U) is something like:
|
;; The type of (elim x_D U) is something like:
|
||||||
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
|
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
|
||||||
;; (method_ci ...) -> ... ->
|
;; (method_ci ...) -> ... ->
|
||||||
;; (a -> ... -> (D a ...) ->
|
;; (a -> ... -> (D a ...) ->
|
||||||
|
@ -858,8 +858,8 @@
|
||||||
;; TODO: Clean up/Reorganize these tests
|
;; TODO: Clean up/Reorganize these tests
|
||||||
(check-true
|
(check-true
|
||||||
(redex-match? cic-typingL
|
(redex-match? cic-typingL
|
||||||
(in-hole Θ_m ((((elim x_D) U) e_D) e_P))
|
(in-hole Θ_m (((elim x_D U) e_D) e_P))
|
||||||
(term (((((elim truth) Type) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
|
(term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
|
||||||
(define Σtruth (term (∅ (truth : (Unv 0) ((T : truth))))))
|
(define Σtruth (term (∅ (truth : (Unv 0) ((T : truth))))))
|
||||||
(check-holds (type-infer ,Σtruth ∅ truth (in-hole Ξ U)))
|
(check-holds (type-infer ,Σtruth ∅ truth (in-hole Ξ U)))
|
||||||
(check-holds (type-infer ,Σtruth ∅ T (in-hole Θ_ai truth)))
|
(check-holds (type-infer ,Σtruth ∅ T (in-hole Θ_ai truth)))
|
||||||
|
@ -872,15 +872,15 @@
|
||||||
(methods-for truth
|
(methods-for truth
|
||||||
(λ (x : truth) (Unv 1))
|
(λ (x : truth) (Unv 1))
|
||||||
((T : truth)))))
|
((T : truth)))))
|
||||||
(check-holds (type-infer ,Σtruth ∅ ((elim truth) Type) t))
|
(check-holds (type-infer ,Σtruth ∅ (elim truth Type) t))
|
||||||
(check-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
(check-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||||
∅
|
∅
|
||||||
(((((elim truth) (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0))
|
((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0))
|
||||||
T)
|
T)
|
||||||
(Unv 1)))
|
(Unv 1)))
|
||||||
(check-not-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
(check-not-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||||
∅
|
∅
|
||||||
(((((elim truth) (Unv 1)) Type) Type) T)
|
((((elim truth (Unv 1)) Type) Type) T)
|
||||||
(Unv 1)))
|
(Unv 1)))
|
||||||
(check-holds
|
(check-holds
|
||||||
(type-infer ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0)) U))
|
(type-infer ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0)) U))
|
||||||
|
@ -898,7 +898,7 @@
|
||||||
(check-holds (type-check ,Σ syn ...)))
|
(check-holds (type-check ,Σ syn ...)))
|
||||||
(nat-test ∅ (Π (x : nat) nat) (Unv 0))
|
(nat-test ∅ (Π (x : nat) nat) (Unv 0))
|
||||||
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
||||||
(nat-test ∅ ((((((elim nat) Type) (λ (x : nat) nat)) zero)
|
(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) zero)
|
||||||
(λ (x : nat) (λ (ih-x : nat) x))) zero)
|
(λ (x : nat) (λ (ih-x : nat) x))) zero)
|
||||||
nat)
|
nat)
|
||||||
(nat-test ∅ nat (Unv 0))
|
(nat-test ∅ nat (Unv 0))
|
||||||
|
@ -907,38 +907,38 @@
|
||||||
(nat-test ∅ (s zero) nat)
|
(nat-test ∅ (s zero) nat)
|
||||||
;; TODO: Meta-function auto-currying and such
|
;; TODO: Meta-function auto-currying and such
|
||||||
(check-holds
|
(check-holds
|
||||||
(type-infer ,Σ ∅ (((((elim nat) (Unv 0)) (λ (x : nat) nat))
|
(type-infer ,Σ ∅ ((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||||
zero)
|
zero)
|
||||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||||
t))
|
t))
|
||||||
(nat-test ∅ ((((((elim nat) (Unv 0)) (λ (x : nat) nat))
|
(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||||
zero)
|
zero)
|
||||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||||
zero)
|
zero)
|
||||||
nat)
|
nat)
|
||||||
(nat-test ∅ ((((((elim nat) (Unv 0)) (λ (x : nat) nat))
|
(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||||
(s zero))
|
(s zero))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||||
zero)
|
zero)
|
||||||
nat)
|
nat)
|
||||||
(nat-test ∅ ((((((elim nat) Type) (λ (x : nat) nat))
|
(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat))
|
||||||
(s zero))
|
(s zero))
|
||||||
(λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)
|
(λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)
|
||||||
nat)
|
nat)
|
||||||
(nat-test (∅ n : nat)
|
(nat-test (∅ n : nat)
|
||||||
((((((elim nat) (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n)
|
(((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n)
|
||||||
nat)
|
nat)
|
||||||
(check-holds
|
(check-holds
|
||||||
(type-check (,Σ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
|
(type-check (,Σ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
|
||||||
(∅ n2 : nat)
|
(∅ n2 : nat)
|
||||||
((((((elim nat) (Unv 0)) (λ (x : nat) bool))
|
(((((elim nat (Unv 0)) (λ (x : nat) bool))
|
||||||
btrue)
|
btrue)
|
||||||
(λ (x : nat) (λ (ih-x : bool) bfalse)))
|
(λ (x : nat) (λ (ih-x : bool) bfalse)))
|
||||||
n2)
|
n2)
|
||||||
bool))
|
bool))
|
||||||
(check-not-holds
|
(check-not-holds
|
||||||
(type-check ,Σ ∅
|
(type-check ,Σ ∅
|
||||||
(((((elim nat) (Unv 0)) nat) (s zero)) zero)
|
((((elim nat (Unv 0)) nat) (s zero)) zero)
|
||||||
nat))
|
nat))
|
||||||
(define lam (term (λ (nat : (Unv 0)) nat)))
|
(define lam (term (λ (nat : (Unv 0)) nat)))
|
||||||
(check-equal?
|
(check-equal?
|
||||||
|
@ -997,7 +997,7 @@
|
||||||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||||
(check-holds
|
(check-holds
|
||||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||||
(((((((elim and) (Unv 0))
|
((((((elim and (Unv 0))
|
||||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||||
true))))
|
true))))
|
||||||
(λ (A : (Unv 0))
|
(λ (A : (Unv 0))
|
||||||
|
@ -1034,7 +1034,7 @@
|
||||||
(check-holds
|
(check-holds
|
||||||
(type-check ,Σ4
|
(type-check ,Σ4
|
||||||
(((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
|
(((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
|
||||||
(((((((elim and) (Unv 0))
|
((((((elim and (Unv 0))
|
||||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||||
((and B) A)))))
|
((and B) A)))))
|
||||||
(λ (A : (Unv 0))
|
(λ (A : (Unv 0))
|
||||||
|
@ -1054,7 +1054,7 @@
|
||||||
t))
|
t))
|
||||||
(check-holds
|
(check-holds
|
||||||
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
(type-check (,Σ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||||
(((((((elim and) (Unv 0))
|
((((((elim and (Unv 0))
|
||||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||||
((and B) A)))))
|
((and B) A)))))
|
||||||
(λ (A : (Unv 0))
|
(λ (A : (Unv 0))
|
||||||
|
@ -1086,17 +1086,17 @@
|
||||||
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
|
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
|
||||||
(check-true
|
(check-true
|
||||||
(redex-match? cic-typingL
|
(redex-match? cic-typingL
|
||||||
((in-hole Θ_m (((elim x_D) U) e_P)) e_D)
|
((in-hole Θ_m ((elim x_D U) e_P)) e_D)
|
||||||
(term ((((elim false) (Unv 1)) (λ (y : false) (Π (x : Type) x)))
|
(term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x)))
|
||||||
x))))
|
x))))
|
||||||
(check-holds
|
(check-holds
|
||||||
(type-check ,sigma (,gamma x : false)
|
(type-check ,sigma (,gamma x : false)
|
||||||
((((elim false) (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
|
(((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
|
||||||
(Π (x : (Unv 0)) x)))
|
(Π (x : (Unv 0)) x)))
|
||||||
|
|
||||||
;; nat-equal? tests
|
;; nat-equal? tests
|
||||||
(define zero?
|
(define zero?
|
||||||
(term (((((elim nat) Type) (λ (x : nat) bool))
|
(term ((((elim nat Type) (λ (x : nat) bool))
|
||||||
true)
|
true)
|
||||||
(λ (x : nat) (λ (x_ih : bool) false)))))
|
(λ (x : nat) (λ (x_ih : bool) false)))))
|
||||||
(check-holds
|
(check-holds
|
||||||
|
@ -1108,7 +1108,7 @@
|
||||||
(term (reduce ,Σ (,zero? (s zero))))
|
(term (reduce ,Σ (,zero? (s zero))))
|
||||||
(term false))
|
(term false))
|
||||||
(define ih-equal?
|
(define ih-equal?
|
||||||
(term (((((elim nat) Type) (λ (x : nat) bool))
|
(term ((((elim nat Type) (λ (x : nat) bool))
|
||||||
false)
|
false)
|
||||||
(λ (x : nat) (λ (y : bool) (x_ih x))))))
|
(λ (x : nat) (λ (y : bool) (x_ih x))))))
|
||||||
(check-holds
|
(check-holds
|
||||||
|
@ -1122,7 +1122,7 @@
|
||||||
(check-holds
|
(check-holds
|
||||||
(type-infer ,Σ ∅ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0))))
|
(type-infer ,Σ ∅ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0))))
|
||||||
(define nat-equal?
|
(define nat-equal?
|
||||||
(term (((((elim nat) Type) (λ (x : nat) (Π (x : nat) bool)))
|
(term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool)))
|
||||||
,zero?)
|
,zero?)
|
||||||
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
|
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
|
||||||
,ih-equal?)))))
|
,ih-equal?)))))
|
||||||
|
@ -1143,7 +1143,7 @@
|
||||||
(check-true (Σ? Σ=))
|
(check-true (Σ? Σ=))
|
||||||
|
|
||||||
(define refl-elim
|
(define refl-elim
|
||||||
(term ((((((((elim ==) (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
|
(term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
|
||||||
A1)
|
A1)
|
||||||
x1)
|
x1)
|
||||||
y1))
|
y1))
|
||||||
|
@ -1154,7 +1154,7 @@
|
||||||
(check-true
|
(check-true
|
||||||
(redex-match?
|
(redex-match?
|
||||||
cic-redL
|
cic-redL
|
||||||
(Σ (in-hole E (in-hole Θ (((elim x_D) U) e_P))))
|
(Σ (in-hole E (in-hole Θ ((elim x_D U) e_P))))
|
||||||
(term (,Σ= ,refl-elim))))
|
(term (,Σ= ,refl-elim))))
|
||||||
(check-true
|
(check-true
|
||||||
(redex-match?
|
(redex-match?
|
||||||
|
|
|
@ -173,7 +173,7 @@
|
||||||
[(elim t1 t2)
|
[(elim t1 t2)
|
||||||
(let* ([t1 (cur->datum #'t1)]
|
(let* ([t1 (cur->datum #'t1)]
|
||||||
[t2 (cur->datum #'t2)])
|
[t2 (cur->datum #'t2)])
|
||||||
(term ((elim ,t1) ,t2)))]
|
(term (elim ,t1 ,t2)))]
|
||||||
[(#%app e1 e2)
|
[(#%app e1 e2)
|
||||||
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
|
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
|
||||||
(unless (and inner-expand? (type-infer/term reified-term))
|
(unless (and inner-expand? (type-infer/term reified-term))
|
||||||
|
|
|
@ -47,22 +47,20 @@
|
||||||
(check-equal? (nat-equal? z (s z)) false)
|
(check-equal? (nat-equal? z (s z)) false)
|
||||||
(check-equal? (nat-equal? (s z) (s z)) true))
|
(check-equal? (nat-equal? (s z) (s z)) true))
|
||||||
|
|
||||||
#| TODO: Disabled until #20 fixed
|
|
||||||
(define (even? (n : Nat))
|
(define (even? (n : Nat))
|
||||||
(elim Nat Type (lambda (x : Nat) Bool)
|
(elim Nat Type (lambda (x : Nat) Bool)
|
||||||
false
|
true
|
||||||
(lambda* (n : Nat) (odd? : Bool)
|
(lambda* (n : Nat) (odd? : Bool)
|
||||||
(not odd?))
|
(not odd?))
|
||||||
n))
|
n))
|
||||||
|
|
||||||
(define (odd? (n : Nat))
|
(define (odd? (n : Nat))
|
||||||
(and (not (even? n))
|
(not (even? n)))
|
||||||
(not (nat-equal? n z))))
|
|
||||||
|
|
||||||
(module+ test
|
(module+ test
|
||||||
(check-equal?
|
(check-equal?
|
||||||
(even? z)
|
(even? z)
|
||||||
false)
|
true)
|
||||||
(check-equal?
|
(check-equal?
|
||||||
(even? (s z))
|
(even? (s z))
|
||||||
false)
|
false)
|
||||||
|
@ -81,4 +79,4 @@
|
||||||
(check-equal?
|
(check-equal?
|
||||||
(odd? (s (s (s z))))
|
(odd? (s (s (s z))))
|
||||||
true))
|
true))
|
||||||
|#
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user