Tests reveal type-safety is broken for elim

This commit is contained in:
William J. Bowman 2015-09-25 14:49:47 -04:00
parent d82727a3fb
commit bd795ba0ea
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -169,9 +169,9 @@
(define-extended-language cic-redL cicL
;; call-by-value, plus reduce under Π (helps with typing checking)
(E ::= hole (v E) (E e)
(Π (x : (in-hole Θ x)) E)
(Π (x : v) E)
(E ::= hole (v E) (E e)
(Π (x : (in-hole Θ x)) E)
(Π (x : v) E)
(Π (x : E) e))
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
(Σ ::= (Σ (x : t ((x : t) ...))))
@ -186,7 +186,8 @@
(module+ test
;; TODO: Rename these signatures, and use them in all future tests.
(define Σ (term ( (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))))
(define Σ (term (( (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))
(bool : (Unv 0) ((true : bool) (false : bool))))))
(define Σ0 (term ))
(define Σ3 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))
(define Σ4 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
@ -1000,7 +1001,44 @@
(check-holds
(type-check ,sigma (,gamma x : false)
((((elim false) (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
(Π (x : (Unv 0)) x)))))
(Π (x : (Unv 0)) x)))
;; nat-equal? tests
(define zero?
(term (((((elim nat) Type) (λ (x : nat) bool))
true)
(λ (x : nat) (λ (x_ih : bool) false)))))
(check-holds
(type-check ,Σ ,zero? (Π (x : nat) bool)))
(check-equal?
(term (reduce ,Σ (,zero? z)))
(term true))
(check-equal?
(term (reduce ,Σ (,zero? (s z))))
(term false))
(define ih-equal?
(term (((((elim nat) Type) (λ (x : nat) bool))
false)
(λ (x : nat) (λ (y : bool) (x_ih x))))))
(check-holds
(type-check ,Σ ( x_ih : (Π (x : nat) bool))
,ih-equal?
(Π (x : nat) bool)))
(check-holds
(type-check ,Σ
(((((((elim nat) Type) (λ (x : nat) (Π (x : nat) bool)))
,zero?)
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
,ih-equal?)))
z) (s z))
(Π (x : nat) (Π (y : nat) bool))))
(check-equal?
(term (reduce ,Σ (((((((elim nat) Type) (λ (x : nat) (Π (x : nat) bool)))
,zero?)
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
,ih-equal?)))
z) (s z))))
false)))
;; This module just provide module language sugar over the redex model.