Dynamic semantics for elim
elim now runs. Parts of the stdlib have been converted to use elim, but it's complicated to program with. Need to implement case and fix in terms of elim, I think.
This commit is contained in:
parent
aafd360541
commit
c4f0f723f5
|
@ -77,6 +77,7 @@
|
|||
(define (CPSf-relation (f1 : CPSf) (f2 : CPSf))
|
||||
;; TODO: Fix run so I can simply use (run CPSf) to perform
|
||||
;; substitution
|
||||
(translate (run CPSf))
|
||||
(translate (forall* (ans : Type) (k : (-> X ans)) ans)))
|
||||
#;(module+ test
|
||||
(require rackunit)
|
||||
|
|
216
redex-curnel.rkt
216
redex-curnel.rkt
|
@ -26,8 +26,8 @@
|
|||
(i ::= natural)
|
||||
(U ::= (Unv i))
|
||||
(x ::= variable-not-otherwise-mentioned)
|
||||
(v ::= (Π (x : t) t) (λ (x : t) t) x U)
|
||||
(t e ::= v (t t) (elim e ...)))
|
||||
(v ::= (Π (x : t) t) (λ (x : t) t) elim x U)
|
||||
(t e ::= v (t t)))
|
||||
(define x? (redex-match? cicL x))
|
||||
(define t? (redex-match? cicL t))
|
||||
(define e? (redex-match? cicL e))
|
||||
|
@ -100,7 +100,8 @@
|
|||
;; binders to be the same in term/type, so this is not a local
|
||||
;; change.
|
||||
[(subst (any (x_0 : t_0) t_1) x t) (any (x_0 : (subst t_0 x t)) (subst t_1 x t))]
|
||||
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))])
|
||||
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
|
||||
[(subst elim x t) elim])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (Π (a : S) (Π (b : B) ((and S) B))))
|
||||
|
@ -115,7 +116,7 @@
|
|||
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
|
||||
|
||||
(define-extended-language cic-redL cicL
|
||||
(E ::= hole (E t)) ;; Call-by-name??
|
||||
(E ::= hole (v E) (E e)) ;; call-by-value
|
||||
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
|
||||
(Σ ::= ∅ (Σ (x : t ((x : t) ...))))
|
||||
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
|
||||
|
@ -161,6 +162,12 @@
|
|||
|
||||
(check-true (Σ? sigma)))
|
||||
|
||||
(define-metafunction cic-redL
|
||||
append-Σ : Σ Σ -> Σ
|
||||
[(append-Σ Σ ∅) Σ]
|
||||
[(append-Σ Σ_2 (Σ_1 (x : t ((x_c : t_c) ...))))
|
||||
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
|
||||
|
||||
;; TODO: Test
|
||||
(define-metafunction cic-redL
|
||||
apply-telescope : t Ξ -> t
|
||||
|
@ -176,8 +183,8 @@
|
|||
;; NB: Depends on clause order
|
||||
(define-metafunction cic-redL
|
||||
select-arg : x (x ...) (Θ e) -> e
|
||||
[(select-arg x (x x_r ...) (Θ e)) e]
|
||||
[(select-arg x (x_1 x_r ...) (Θ e))
|
||||
[(select-arg x (x x_r ...) (in-hole Θ (hole e))) e]
|
||||
[(select-arg x (x_1 x_r ...) (in-hole Θ (hole e)))
|
||||
(select-arg x (x_r ...) Θ)])
|
||||
|
||||
(define-metafunction cic-redL
|
||||
|
@ -185,16 +192,42 @@
|
|||
[(method-lookup Σ x_D x_ci Θ)
|
||||
(select-arg x_ci (x_0 ...) Θ)
|
||||
(where ((x_0 : t_0) ...) (constructors-for Σ x_D)) ])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (method-lookup ,Σ nat s
|
||||
((hole (s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s zero)))))))
|
||||
(term (λ (x : nat) (λ (ih-x : nat) (s (s zero)))))))
|
||||
|
||||
;; TODO: This should be a helper, as it has a weird invariant about
|
||||
;; TODO: the first two Θs that should not be exposed to caller
|
||||
;; Create the recursive applications of elim to the recursive
|
||||
;; arguments of an inductive constructor.
|
||||
;; TODO: Poorly documented, and poorly tested.
|
||||
(define-metafunction cic-redL
|
||||
elim-recur : x e Θ Θ Θ (x ...) -> Θ
|
||||
[(elim-recur x_D e_P Θ hole hole () e_P) hole]
|
||||
[(elim-recur x_D e_P Θ (in-hole Θ_m (hole e_mi)) (in-hole Θ_t (in-hole Θ_r x_ci))
|
||||
(x_ci x_c ...) e_P )
|
||||
((elim-recur x_D e_P Θ Θ_m Θ_i (x_c ...))
|
||||
[(elim-recur x_D e_P Θ Θ_i hole (x ...)) hole]
|
||||
[(elim-recur x_D e_P Θ
|
||||
(in-hole Θ_m (hole e_mi))
|
||||
(in-hole Θ_i (hole (in-hole Θ_r x_ci)))
|
||||
(x_c0 ... x_ci x_c1 ...))
|
||||
((elim-recur x_D e_P Θ Θ_m Θ_i (x_c0 ... x_ci x_c1 ...))
|
||||
(in-hole Θ (((elim x_D) (in-hole Θ_r x_ci)) e_P)))])
|
||||
(module+ test
|
||||
(check-true
|
||||
(redex-match? cic-redL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
|
||||
(check-equal?
|
||||
(term (elim-recur nat (λ (x : nat) nat)
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(hole zero)
|
||||
(zero s)))
|
||||
(term (hole (((((elim nat) zero) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))))))
|
||||
(check-equal?
|
||||
(term (elim-recur nat (λ (x : nat) nat)
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(hole (s zero))
|
||||
(zero s)))
|
||||
(term (hole (((((elim nat) (s zero)) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))))))
|
||||
|
||||
(define-judgment-form cic-redL
|
||||
#:mode (length-match I I)
|
||||
|
@ -211,10 +244,6 @@
|
|||
(--> (Σ (in-hole E ((any (x : t_0) t_1) t_2)))
|
||||
(Σ (in-hole E (subst t_1 x t_2)))
|
||||
-->β)
|
||||
;; TODO: This doesn't seem right; need to check that x not bound in e_f
|
||||
#;(--> (Σ (in-hole E (any (x : t_0) (e_f x))))
|
||||
(Σ (in-hole E e_f))
|
||||
-->η)
|
||||
(--> (Σ (in-hole E (in-hole Θ_m (((elim x_D) (in-hole Θ_i x_ci)) e_P))))
|
||||
(Σ (in-hole E (in-hole Θ_r (in-hole Θ_i e_mi))))
|
||||
(where ((x_c : t_c) ...) (constructors-for Σ x_D))
|
||||
|
@ -225,18 +254,6 @@
|
|||
(where Θ_r (elim-recur x_D e_P Θ_m Θ_m Θ_i (x_c ...)))
|
||||
-->elim)))
|
||||
|
||||
;; Reducing elim:
|
||||
;; (in-hole Θ_m (((elim D) (in-hole Θ_i c_i)) v_P)) ->
|
||||
;; (in-hole Θ_r (in-hole Θ_i m_i) ...)
|
||||
;; (where m_i (method-lookup D c_i Θ_m))
|
||||
;; (where Θ_r (elim-recur D Θ_m Θ_i (constructors-for D) v_P Θ_m))
|
||||
;;
|
||||
;; (elim-recur D Θ_m hole () v_P hole) = hole
|
||||
;; Not so sure about the (in-hole Θ_t ) bit. Trying to ignore the
|
||||
;; non-recursive parameters.
|
||||
;; (elim-recur D Θ (in-hole Θ_t (Θ_i (in-hole Θ_r c_i))) (c_i c ...) v_P (Θ_m m_i)) =
|
||||
;; ((elim-recur D Θ Θ_i (c ...) v_P Θ_m) (in-hole Θ (((elim D) (in-hole Θ_r c_i)) v_P))
|
||||
|
||||
(define-metafunction cic-redL
|
||||
reduce : Σ e -> e
|
||||
[(reduce Σ e) e_r
|
||||
|
@ -248,18 +265,29 @@
|
|||
;; NB: Currently not reducing under binders. I forget why.
|
||||
(check-equal? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
|
||||
(term (Π (x : t) (Unv 0))))
|
||||
(check-equal? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) x_0) x))))
|
||||
(term (Π (x_0 : t) x_0)))
|
||||
(check-equal? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
||||
(term (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
||||
(check-equal? (term (reduce ,Σ (((((elim nat) (s z)) (λ (x : nat) nat))
|
||||
(s z))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))))
|
||||
(term (s (s z))))
|
||||
(check-equal? (term (reduce ,Σ (elim nat (s (s (s z))) nat (s z) (λ (x : nat)
|
||||
(s (s
|
||||
x))))))
|
||||
(term (s (s (s (s z)))))))
|
||||
(check-equal? (term (reduce ,Σ (((((elim nat) zero) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
(s (s x)))))))
|
||||
(term (s zero)))
|
||||
(check-equal? (term (reduce ,Σ (((((elim nat) (s zero)) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
(s (s x)))))))
|
||||
(term (s (s zero))))
|
||||
(check-equal? (term (reduce ,Σ (((((elim nat) (s (s (s zero)))) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))))
|
||||
(term (s (s (s (s zero))))))
|
||||
|
||||
(check-equal?
|
||||
(term (reduce ,Σ
|
||||
(((((elim nat) (s (s zero))) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))))
|
||||
(term (s (s (s (s zero)))))))
|
||||
|
||||
|
||||
(define-extended-language cic-typingL cic-redL
|
||||
|
@ -269,10 +297,10 @@
|
|||
(define Γ? (redex-match? cic-typingL Γ))
|
||||
|
||||
(define-metafunction cic-typingL
|
||||
append-env : Γ Γ -> Γ
|
||||
[(append-env Γ ∅) Γ]
|
||||
[(append-env Γ_2 (Γ_1 x : t))
|
||||
((append-env Γ_2 Γ_1) x : t)])
|
||||
append-Γ : Γ Γ -> Γ
|
||||
[(append-Γ Γ ∅) Γ]
|
||||
[(append-Γ Γ_2 (Γ_1 x : t))
|
||||
((append-Γ Γ_2 Γ_1) x : t)])
|
||||
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction cic-typingL
|
||||
|
@ -465,6 +493,22 @@
|
|||
()))
|
||||
(term hole)))
|
||||
|
||||
;; Returns the inductively defined type that x constructs
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction cic-redL
|
||||
constructor-of : Σ x -> x
|
||||
[(constructor-of (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...)))
|
||||
x_c) x]
|
||||
[(constructor-of (Σ (x_1 : t_1 ((x_c : t) ...))) x)
|
||||
(constructor-of Σ x)])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (constructor-of ,Σ zero))
|
||||
(term nat))
|
||||
(check-equal?
|
||||
(term (constructor-of ,Σ s))
|
||||
(term nat)))
|
||||
|
||||
;; Returns the constructors for the inductively defined type x_D in
|
||||
;; the signature Σ
|
||||
(define-metafunction cic-redL
|
||||
|
@ -689,10 +733,13 @@
|
|||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
nat)
|
||||
(nat-test (∅ n : nat)
|
||||
(((((elim nat) n) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x)))
|
||||
nat)
|
||||
(check-false (judgment-holds
|
||||
(types ,Σ
|
||||
∅
|
||||
(elim nat zero nat (s zero))
|
||||
((((elim nat) zero) nat) (s zero))
|
||||
nat)))
|
||||
(define lam (term (λ (nat : (Unv 0)) nat)))
|
||||
(check-equal?
|
||||
|
@ -829,6 +876,8 @@
|
|||
|
||||
[dep-inductive data]
|
||||
|
||||
[dep-elim elim]
|
||||
|
||||
[dep-var #%top]
|
||||
|
||||
; [dep-datum #%datum]
|
||||
|
@ -885,15 +934,32 @@
|
|||
(error 'core-error "We built a bad sigma ~s" x))
|
||||
x)))
|
||||
|
||||
(define (extend-env/term env x t)
|
||||
(define (extend-Γ/term env x t)
|
||||
(term (,(env) ,x : ,t)))
|
||||
|
||||
(define (extend-env/term! env x t) (env (extend-env/term env x t)))
|
||||
(define (extend-Γ/term! env x t) (env (extend-Γ/term env x t)))
|
||||
|
||||
(define (extend-env/syn env x t)
|
||||
(term (,(env) ,(syntax->datum x) : ,(cur->datum t))))
|
||||
(define (extend-Γ/syn env x t)
|
||||
(extend-Γ/term env (syntax->datum x) (cur->datum t)))
|
||||
|
||||
(define (extend-env/syn! env x t) (env (extend-env/syn env x t)))
|
||||
(define (extend-Γ/syn! env x t) (env (extend-Γ/syn env x t)))
|
||||
|
||||
(define (extend-Σ/term env x t c*)
|
||||
(term (,(env) (,x : ,t (,@c*)))))
|
||||
|
||||
(define (extend-Σ/term! env x t c*)
|
||||
(env (extend-Σ/term env x t c*)))
|
||||
|
||||
(define (extend-Σ/syn env x t c*)
|
||||
(extend-Σ/term env (syntax->datum x) (cur->datum t)
|
||||
(for/list ([c (syntax->list c*)])
|
||||
(syntax-case c ()
|
||||
[(c : ct)
|
||||
(parameterize ([gamma (extend-Γ/syn gamma x t)])
|
||||
(term (,(syntax->datum #'c) : ,(cur->datum #'ct))))]))))
|
||||
|
||||
(define (extend-Σ/syn! env x t c*)
|
||||
(env (extend-Σ/syn env x t c*)))
|
||||
|
||||
(define bind-subst (make-parameter (list null null)))
|
||||
|
||||
|
@ -911,7 +977,7 @@
|
|||
(define (syntax->curnel-syntax syn) (denote syn (cur->datum syn)))
|
||||
|
||||
(define (denote syn t)
|
||||
#`(term (reduce (subst-all #,(datum->syntax syn t) #,(first (bind-subst)) #,(second (bind-subst))))))
|
||||
#`(term (reduce #,(sigma) (subst-all #,(datum->syntax syn t) #,(first (bind-subst)) #,(second (bind-subst))))))
|
||||
|
||||
;; TODO: Blanket disarming is probably a bad idea.
|
||||
(define orig-insp (variable-reference->module-declaration-inspector
|
||||
|
@ -922,7 +988,7 @@
|
|||
(define (core-expand syn)
|
||||
(disarm
|
||||
(local-expand syn 'expression
|
||||
(append (syntax-e #'(term reduce subst-all dep-var #%app λ Π μ case
|
||||
(append (syntax-e #'(term reduce subst-all dep-var #%app λ Π elim
|
||||
Unv #%datum))))))
|
||||
|
||||
;; Only type-check at the top-level, to prevent exponential
|
||||
|
@ -939,10 +1005,10 @@
|
|||
(let cur->datum ([syn syn])
|
||||
(syntax-parse (core-expand syn)
|
||||
#:literals (term reduce #%app subst-all)
|
||||
#:datum-literals (case Π λ μ : Unv)
|
||||
#:datum-literals (elim Π λ : Unv)
|
||||
[x:id (syntax->datum #'x)]
|
||||
[(subst-all e _ _) (syntax->datum #'e)]
|
||||
[(reduce e) (cur->datum #'e)]
|
||||
[(reduce Σ e) (cur->datum #'e)]
|
||||
[(term e) (cur->datum #'e)]
|
||||
[(Unv i) (term (Unv ,(syntax->datum #'i)))]
|
||||
;; TODO: should really check that b is one of the binders
|
||||
|
@ -951,9 +1017,17 @@
|
|||
[(b:id (x:id : t) e)
|
||||
(let* ([x (syntax->datum #'x)]
|
||||
[t (cur->datum #'t)]
|
||||
[e (parameterize ([gamma (extend-env/term gamma x t)])
|
||||
[e (parameterize ([gamma (extend-Γ/term gamma x t)])
|
||||
(cur->datum #'e))])
|
||||
(term (,(syntax->datum #'b) (,x : ,t) ,e)))]
|
||||
[(elim t e P m ...)
|
||||
(let* ([t (cur->datum #'t)]
|
||||
[e (cur->datum #'e)]
|
||||
[P (cur->datum #'P)]
|
||||
[e (term (((elim ,t) ,e) ,P))])
|
||||
(for/fold ([e e])
|
||||
([m (syntax->list #'(m ...))])
|
||||
(term (,e ,(cur->datum m)))))]
|
||||
[(#%app e1 e2)
|
||||
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
|
||||
(unless (and inner-expand? (type-infer/term reified-term))
|
||||
|
@ -977,7 +1051,7 @@
|
|||
(equal? t (cur->datum type))))
|
||||
|
||||
(define (normalize/syn syn)
|
||||
(denote syn (term (reduce (subst-all ,(cur->datum syn) ,(first (bind-subst)) ,(second (bind-subst)))))))
|
||||
(denote syn (term (reduce ,(sigma) (subst-all ,(cur->datum syn) ,(first (bind-subst)) ,(second (bind-subst)))))))
|
||||
|
||||
;; Takes a Cur term syn and an arbitrary number of identifiers ls. The cur term is
|
||||
;; expanded until expansion reaches a Curnel form, or one of the
|
||||
|
@ -985,7 +1059,7 @@
|
|||
(define (cur-expand syn . ls)
|
||||
(disarm (local-expand syn 'expression
|
||||
(append (syntax-e #'(Type dep-inductive dep-lambda dep-app
|
||||
dep-forall dep-var))
|
||||
dep-elim dep-forall dep-var))
|
||||
ls)))))
|
||||
|
||||
;; TODO: OOps, run doesn't return a cur term but a redex term
|
||||
|
@ -1005,8 +1079,8 @@
|
|||
(define (cur-identifier-bound? id)
|
||||
(let ([x (syntax->datum id)])
|
||||
(and (x? x)
|
||||
(or (term (lookup ,(gamma) ,x))
|
||||
(term (lookup ,(sigma) ,x))))))
|
||||
(or (term (lookup-Γ ,(gamma) ,x))
|
||||
(term (lookup-Σ ,(sigma) ,x))))))
|
||||
|
||||
(define (filter-cur-exports syn modes)
|
||||
(partition (compose cur-identifier-bound? export-local-id)
|
||||
|
@ -1018,8 +1092,9 @@
|
|||
(syntax-case syn ()
|
||||
[(_ e ...)
|
||||
(let-values ([(cur ~cur) (filter-cur-exports #'(e ...) modes)])
|
||||
(set! envs (for/list ([e cur])
|
||||
(let* ([x (syntax->datum (export-local-id e))]
|
||||
;; TODO: Ignoring the built envs for now
|
||||
#;(set! envs (for/list ([e cur])
|
||||
(let* ([x (syntax->datum (export-local-id e))]
|
||||
[t (type-infer/term x)]
|
||||
[env (if (term (lookup ,(gamma) ,x)) #'gamma #'sigma)])
|
||||
#`(extend-env/term! #,env #,(export-out-sym e) #,t))))
|
||||
|
@ -1070,7 +1145,7 @@
|
|||
;; TODO: Do not DIY gensym
|
||||
(set! gn (add1 gn))
|
||||
(set! out-gammas
|
||||
#`(#,@out-gammas (gamma (term (append-env
|
||||
#`(#,@out-gammas (gamma (term (append-Γ
|
||||
,(gamma)
|
||||
,#,new-id)))))
|
||||
(cons (struct-copy import imp [local-id new-id])
|
||||
|
@ -1083,7 +1158,7 @@
|
|||
;; TODO: Do not DIY gensym
|
||||
(set! sn (add1 sn))
|
||||
(set! out-sigmas
|
||||
#`(#,@out-sigmas (sigma (term (append-env
|
||||
#`(#,@out-sigmas (sigma (term (append-Σ
|
||||
,(sigma)
|
||||
,#,new-id)))))
|
||||
(cons (struct-copy import imp [local-id new-id])
|
||||
|
@ -1161,24 +1236,23 @@
|
|||
[(_ i) (syntax->curnel-syntax #'(Unv i))]
|
||||
[_ #'(Type 0)]))
|
||||
|
||||
(define-syntax (dep-fix syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e) (syntax->curnel-syntax #`(μ (x : t) e))]))
|
||||
|
||||
(define-syntax (dep-inductive syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ i : ti (x1 : t1) ...)
|
||||
(begin
|
||||
(extend-env/syn! sigma #'i #'ti)
|
||||
(for ([x (syntax->list #`(x1 ...))]
|
||||
[t (syntax->list #`(t1 ...))])
|
||||
(extend-env/syn! sigma x t))
|
||||
(extend-Σ/syn! sigma #'i #'ti #'((x1 : t1) ...))
|
||||
#'(void))]))
|
||||
|
||||
(define-syntax (dep-elim syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ D e P method ...)
|
||||
(syntax->curnel-syntax
|
||||
#`(elim D e P method ...))]))
|
||||
|
||||
;; TODO: Not sure if this is the correct behavior for #%top
|
||||
(define-syntax (dep-var syn)
|
||||
(syntax-case syn ()
|
||||
[(_ . id) #`(term (reduce id))]))
|
||||
[(_ . id) #`(term (reduce #,(sigma) id))]))
|
||||
|
||||
;; TODO: Syntax-parse
|
||||
(define-syntax (dep-define syn)
|
||||
|
@ -1191,7 +1265,7 @@
|
|||
;; environment and have denote do a giant substitution
|
||||
(let ([e (cur->datum #'e)]
|
||||
[id (syntax->datum #'id)])
|
||||
(extend-env/term! gamma id (type-infer/term e))
|
||||
(extend-Γ/term! gamma id (type-infer/term e))
|
||||
(add-binding/term! id e)
|
||||
#'(void))])))
|
||||
|
||||
|
|
|
@ -8,9 +8,10 @@
|
|||
(define-syntax (if syn)
|
||||
(syntax-case syn ()
|
||||
[(_ t s f)
|
||||
#'(case t
|
||||
[btrue s]
|
||||
[bfalse f])]))
|
||||
;; Compute the motive
|
||||
(let ([M #`(lambda (x : #,(type-infer/syn #'t))
|
||||
#,(type-infer/syn #'s))])
|
||||
#`(elim bool t #,M s f))]))
|
||||
|
||||
(define (bnot (x : bool)) (if x bfalse btrue))
|
||||
(module+ test
|
||||
|
|
|
@ -9,8 +9,11 @@
|
|||
(module+ test
|
||||
(require rackunit "bool.rkt")
|
||||
;; TODO: Dependent pattern matching doesn't work yet
|
||||
#;(check-equal? (case* (some bool btrue)
|
||||
[(none (A : Type)) bfalse]
|
||||
[(some (A : Type) (x : bool))
|
||||
(if x btrue bfalse)])
|
||||
btrue))
|
||||
(check-equal?
|
||||
(case* maybe (some bool btrue)
|
||||
(lambda (x : (maybe bool)) bool)
|
||||
[(none (A : Type)) with-IH ()
|
||||
bfalse]
|
||||
[(some (A : Type) (x : A)) with-IH ()
|
||||
(if x btrue bfalse)])
|
||||
btrue))
|
||||
|
|
|
@ -2,45 +2,45 @@
|
|||
(require "sugar.rkt" "bool.rkt")
|
||||
;; TODO: override (all-defined-out) to enable exporting all these
|
||||
;; properly.
|
||||
(provide nat z s add1 sub1 plus nat-equal?)
|
||||
(provide nat z s add1 sub1 plus )
|
||||
(module+ test
|
||||
(require rackunit))
|
||||
|
||||
(data nat : Type
|
||||
(z : nat)
|
||||
(s : (-> nat nat)))
|
||||
;; TODO: Can't use -> syntax here due to issues with names
|
||||
(s : (forall (x : nat) nat)))
|
||||
|
||||
(define (add1 (n : nat)) (s n))
|
||||
(module+ test
|
||||
(check-equal? (add1 (s z)) (s (s z))))
|
||||
|
||||
(define (sub1 (n : nat))
|
||||
(case n
|
||||
(case* nat n (lambda (x : nat) nat)
|
||||
[z z]
|
||||
[s (lambda (x : nat) x)]))
|
||||
[(s (x : nat)) IH: ((ih-x : nat)) x]))
|
||||
(module+ test
|
||||
(check-equal? (sub1 (s z)) z))
|
||||
|
||||
(define plus
|
||||
(fix (plus : (forall* (n1 : nat) (n2 : nat) nat))
|
||||
(lambda (n1 : nat)
|
||||
(lambda (n2 : nat)
|
||||
(case n1
|
||||
[z n2]
|
||||
[s (λ (x : nat) (plus x (s n2)))])))))
|
||||
(define (plus (n1 : nat) (n2 : nat))
|
||||
(case* nat n1 (lambda (x : nat) nat)
|
||||
[z n2]
|
||||
[(s (x : nat)) IH: ((ih-x : nat))
|
||||
(s ih-x)]))
|
||||
(module+ test
|
||||
(check-equal? (plus z z) z)
|
||||
(check-equal? (plus (s (s z)) (s (s z))) (s (s (s (s z))))))
|
||||
|
||||
(define-rec (nat-equal? (n1 : nat) (n2 : nat) : bool)
|
||||
(case* n1
|
||||
[z (case* n2
|
||||
(define (nat-equal? (n1 : nat) (n2 : nat) : bool)
|
||||
(case* nat n1 (lambda (x : nat) bool)
|
||||
[z (case* nat n2 (lambda (x : nat) bool)
|
||||
[z btrue]
|
||||
[(s (n3 : nat)) bfalse])]
|
||||
[(s (n3 : nat))
|
||||
(case* n2
|
||||
[z btrue]
|
||||
[(s (n4 : nat)) (nat-equal? n3 n4)])]))
|
||||
[(s (x : nat)) IH: ((ih-x : bool)) bfalse])]
|
||||
[(s (x : nat)) IH: ((ih-x : bool))
|
||||
(case* nat n2 (lambda (x : nat) bool)
|
||||
[z bfalse]
|
||||
[(s (x : nat)) IH: ((ih-x : bool))
|
||||
ih-x])]))
|
||||
(module+ test
|
||||
(check-equal? btrue (nat-equal? z z))
|
||||
(check-equal? bfalse (nat-equal? z (s z)))
|
||||
|
|
|
@ -66,16 +66,20 @@
|
|||
[(_ (name (a : t) ... : t_res) body)
|
||||
#'(define name (fix (name : (forall* (a : t) ... t_res))
|
||||
(lambda* (a : t) ... body)))]))
|
||||
|
||||
(begin-for-syntax
|
||||
(define (rewrite-clause clause)
|
||||
(syntax-case clause (:)
|
||||
[((con (a : A) ...) body) #'(con (lambda* (a : A) ... body))]
|
||||
[(e body) #'(e body)])))
|
||||
(syntax-case clause (: IH:)
|
||||
[((con (a : A) ...) IH: ((x : t) ...) body)
|
||||
#'(lambda* (a : A) ... (x : t) ... body)]
|
||||
[(e body) #'body])))
|
||||
|
||||
;; TODO: Expects clauses in same order as constructors as specified when
|
||||
;; TODO: inductive D is defined.
|
||||
(define-syntax (case* syn)
|
||||
(syntax-case syn ()
|
||||
[(_ e clause* ...)
|
||||
#`(case e #,@(map rewrite-clause (syntax->list #'(clause* ...))))]))
|
||||
[(_ D e P clause* ...)
|
||||
#`(elim D e P #,@(map rewrite-clause (syntax->list #'(clause* ...))))]))
|
||||
|
||||
(define-syntax-rule (define-theorem name prop)
|
||||
(define name prop))
|
||||
|
|
Loading…
Reference in New Issue
Block a user