Removed tests from hybrid-core
Tests are now in cur-test, so removed from hybrid-core
This commit is contained in:
parent
23d0cf3e6f
commit
c99b44bc09
|
@ -51,57 +51,6 @@
|
|||
(define U? (redex-match? ttL U))
|
||||
(define Δ? (redex-match? ttL Δ))
|
||||
|
||||
(module+ test
|
||||
(define-term Type (Unv 0))
|
||||
(check-true (x? (term T)))
|
||||
(check-true (x? (term A)))
|
||||
(check-true (x? (term truth)))
|
||||
(check-true (x? (term zero)))
|
||||
(check-true (x? (term s)))
|
||||
(check-true (t? (term zero)))
|
||||
(check-true (t? (term s)))
|
||||
(check-true (x? (term nat)))
|
||||
(check-true (t? (term nat)))
|
||||
(check-true (t? (term A)))
|
||||
(check-true (t? (term S)))
|
||||
(check-true (U? (term (Unv 0))))
|
||||
(check-true (U? (term Type)))
|
||||
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
|
||||
;; TODO: Rename these signatures, and use them in all future tests.
|
||||
(define Δ (term ((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(bool : (Unv 0) ((true : bool) (false : bool))))))
|
||||
(define Δ0 (term ∅))
|
||||
(define Δ3 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))
|
||||
(define Δ4 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))))))
|
||||
(check-true (Δ? Δ0))
|
||||
(check-true (Δ? Δ))
|
||||
(check-true (Δ? Δ4))
|
||||
(check-true (Δ? Δ3))
|
||||
(check-true (Δ? Δ4))
|
||||
(define sigma (term ((((((∅ (true : (Unv 0) ((T : true))))
|
||||
(false : (Unv 0) ()))
|
||||
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
()))
|
||||
(nat : (Unv 0) ()))
|
||||
(heap : (Unv 0) ()))
|
||||
(pre : (Π (temp808 : heap) (Unv 0)) ()))))
|
||||
(check-true (Δ? (term (∅ (true : (Unv 0) ((T : true)))))))
|
||||
(check-true (Δ? (term (∅ (false : (Unv 0) ())))))
|
||||
(check-true (Δ? (term (∅ (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
(check-true (Δ? (term (∅ (nat : (Unv 0) ())))))
|
||||
(check-true (Δ? (term (∅ (pre : (Π (temp808 : heap) (Unv 0)) ())))))
|
||||
|
||||
(check-true (Δ? (term ((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())))))
|
||||
(check-true (Δ? (term (((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))
|
||||
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
(check-true (Δ? sigma)))
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Universe typing
|
||||
|
||||
|
@ -130,23 +79,12 @@
|
|||
[(α-equivalent? t_0 t_1)
|
||||
,(alpha-equivalent? ttL (term t_0) (term t_1))])
|
||||
|
||||
(module+ test
|
||||
(default-equiv (lambda (x y) (term (α-equivalent? ,x ,y)))))
|
||||
|
||||
;; Replace x by t_1 in t_0
|
||||
(define-metafunction ttL
|
||||
subst : t x t -> t
|
||||
[(subst t_0 x t_1)
|
||||
(substitute t_0 x t_1)])
|
||||
|
||||
(module+ test
|
||||
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
|
||||
(check-true
|
||||
(term
|
||||
(α-equivalent?
|
||||
(Π (a : S) (Π (b : B) ((and S) B)))
|
||||
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S)))))
|
||||
|
||||
(define-metafunction ttL
|
||||
subst-all : t (x ...) (e ...) -> t
|
||||
[(subst-all t () ()) t]
|
||||
|
@ -186,14 +124,6 @@
|
|||
[(Δ-key-by-constructor (Δ (x_1 : t_1 any)) x)
|
||||
(Δ-key-by-constructor Δ x)])
|
||||
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (Δ-key-by-constructor ,Δ zero))
|
||||
(term nat))
|
||||
(check-equal?
|
||||
(term (Δ-key-by-constructor ,Δ s))
|
||||
(term nat)))
|
||||
|
||||
;; Returns the constructor map for the inductively defined type x_D in the signature Δ
|
||||
(define-metafunction ttL
|
||||
Δ-ref-constructor-map : Δ x -> ((x : t) ...) or #f
|
||||
|
@ -204,14 +134,6 @@
|
|||
[(Δ-ref-constructor-map (Δ (x_1 : t_1 any)) x_D)
|
||||
(Δ-ref-constructor-map Δ x_D)])
|
||||
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (Δ-ref-constructor-map ,Δ nat))
|
||||
(term ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(check-equal?
|
||||
(term (Δ-ref-constructor-map ,sigma false))
|
||||
(term ())))
|
||||
|
||||
;; TODO: Should not use Δ-ref-type
|
||||
(define-metafunction ttL
|
||||
Δ-ref-constructor-type : Δ x x -> t
|
||||
|
@ -257,15 +179,6 @@
|
|||
(define Φ? (redex-match? tt-ctxtL Φ))
|
||||
(define Θ? (redex-match? tt-ctxtL Θ))
|
||||
|
||||
(module+ test
|
||||
;; Are these telescopes the same when filled with alpha-equivalent, and equivalently renamed, termed
|
||||
(define (telescope-equiv x y)
|
||||
(alpha-equivalent? ttL (term (in-hole ,x (Unv 0))) (term (in-hole ,y (Unv 0)))))
|
||||
(define-syntax-rule (check-telescope-equiv? e1 e2)
|
||||
(check telescope-equiv e1 e2))
|
||||
(define-syntax-rule (check-telescope-not-equiv? e1 e2)
|
||||
(check (compose not telescope-equiv) e1 e2)))
|
||||
|
||||
;; TODO: Might be worth it to actually maintain the above bijections, for performance reasons.
|
||||
|
||||
;; Return the parameters of x_D as a telescope Ξ
|
||||
|
@ -277,14 +190,6 @@
|
|||
[(Δ-ref-parameter-Ξ (Δ (x_1 : t_1 any)) x_D)
|
||||
(Δ-ref-parameter-Ξ Δ x_D)])
|
||||
|
||||
(module+ test
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-ref-parameter-Ξ ,Δ nat))
|
||||
(term hole))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-ref-parameter-Ξ ,Δ4 and))
|
||||
(term (Π (A : Type) (Π (B : Type) hole)))))
|
||||
|
||||
;; Applies the term t to the telescope Ξ.
|
||||
;; TODO: Test
|
||||
#| TODO:
|
||||
|
@ -304,13 +209,6 @@
|
|||
[(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...)
|
||||
(Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)])
|
||||
|
||||
(module+ test
|
||||
(check-telescope-equiv?
|
||||
(term (Ξ-compose
|
||||
(Π (x : t_0) (Π (y : t_1) hole))
|
||||
(Π (z : t_2) (Π (a : t_3) hole))))
|
||||
(term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole)))))))
|
||||
|
||||
;; Compute the number of arguments in a Ξ
|
||||
(define-metafunction tt-ctxtL
|
||||
Ξ-length : Ξ -> natural
|
||||
|
@ -423,37 +321,6 @@
|
|||
[(Δ-methods-telescope Δ x_D t_P)
|
||||
(method-loop Δ x_D t_P (Δ-ref-constructors Δ x_D))])
|
||||
|
||||
(module+ test
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
|
||||
(term (Π (m-zero : ((λ (x : nat) nat) zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat P))
|
||||
(term (Π (m-zero : (P zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
|
||||
hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
|
||||
(term (Π (m-zero : ((λ (x : nat) nat) zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x)))))
|
||||
hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))))
|
||||
(term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
|
||||
((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
A)
|
||||
B)
|
||||
((((conj A) B) a) b)))))))
|
||||
hole)))
|
||||
(check-true (x? (term false)))
|
||||
(check-true (Ξ? (term hole)))
|
||||
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
|
||||
(check-true (redex-match? ttL ((x : t) ...) (term ())))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))
|
||||
(term hole)))
|
||||
|
||||
;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result
|
||||
;; is in universe U.
|
||||
;;
|
||||
|
@ -506,27 +373,6 @@
|
|||
(side-condition (memq (term x_ci) (term (Δ-ref-constructors Δ x_D))))]
|
||||
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_nr) hole])
|
||||
|
||||
;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction.
|
||||
(module+ test
|
||||
(check-true
|
||||
(redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(hole zero)))
|
||||
(term (hole (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(hole (s zero))))
|
||||
(term (hole (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(s zero))))))
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Dynamic semantics
|
||||
;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the
|
||||
|
@ -544,11 +390,6 @@
|
|||
(define E? (redex-match? tt-redL E))
|
||||
(define v? (redex-match? tt-redL v))
|
||||
|
||||
(module+ test
|
||||
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (v? (term (refl Nat))))
|
||||
(check-true (v? (term ((refl Nat) z)))))
|
||||
|
||||
(define current-Δ (make-parameter (term ∅)))
|
||||
(define tt-->
|
||||
(reduction-relation tt-redL
|
||||
|
@ -614,70 +455,6 @@
|
|||
(dict-set! reduce-memoize (term e_r) x)
|
||||
x)))))])
|
||||
|
||||
;; TODO: Move equivalence up here, and use in these tests.
|
||||
(module+ test
|
||||
(check-equiv? (term (reduce ∅ (Unv 0))) (term (Unv 0)))
|
||||
(check-equiv? (term (reduce ∅ ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
|
||||
(check-not-equiv? (term (reduce ∅ ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
|
||||
(check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
|
||||
(term (Π (x : t) (Unv 0))))
|
||||
(check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
||||
(term (Π (x : t) (x x))))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
(s (s x)))))
|
||||
zero)))
|
||||
(term (s zero)))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
(s (s x)))))
|
||||
(s zero))))
|
||||
(term (s (s zero))))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(s (s (s zero))))))
|
||||
(term (s (s (s (s zero))))))
|
||||
|
||||
(check-equiv?
|
||||
(term (reduce ,Δ
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s (s zero)))))
|
||||
(term (s (s (s (s zero))))))
|
||||
(check-equiv?
|
||||
(term (step ,Δ
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s (s zero)))))
|
||||
(term
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
(s zero))
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s zero)))))
|
||||
(check-equiv?
|
||||
(term (step ,Δ (step ,Δ
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
(s zero))
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s zero))))))
|
||||
(term
|
||||
((λ (ih-x1 : nat) (s ih-x1))
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
zero)
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
zero))))))
|
||||
|
||||
(define-judgment-form tt-redL
|
||||
#:mode (equivalent I I I)
|
||||
#:contract (equivalent Δ t t)
|
||||
|
@ -687,13 +464,6 @@
|
|||
(side-condition (α-equivalent? t_2 t_3))
|
||||
----------------- "≡-αβ"
|
||||
(equivalent Δ t_0 t_1)])
|
||||
(module+ test
|
||||
(define-syntax-rule (check-equivalent e1 e2)
|
||||
(check-holds (equivalent ∅ e1 e2)))
|
||||
(check-equivalent
|
||||
(λ (x : Type) x) (λ (y : Type) y))
|
||||
(check-equivalent
|
||||
(Π (x : Type) x) (Π (y : Type) y)))
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Type checking and synthesis
|
||||
|
@ -757,22 +527,6 @@
|
|||
,(and (term (positive x_D (in-hole Ξ (Unv 0)))) (term (positive* x_D (t_rest ...))))
|
||||
(where (in-hole Ξ (in-hole Θ x_D)) t_c)])
|
||||
|
||||
;; NB: These tests may or may not fail because positivity checking is not implemented.
|
||||
(module+ test
|
||||
(check-true (term (positive* nat (nat))))
|
||||
(check-true (term (positive* nat ((Π (x : (Unv 0)) (Π (y : (Unv 0)) nat))))))
|
||||
(check-true (term (positive* nat ((Π (x : nat) nat)))))
|
||||
;; (nat -> nat) -> nat
|
||||
;; Not sure if this is actually supposed to pass
|
||||
(check-false (term (positive* nat ((Π (x : (Π (y : nat) nat)) nat)))))
|
||||
;; ((Unv 0) -> nat) -> nat
|
||||
(check-true (term (positive* nat ((Π (x : (Π (y : (Unv 0)) nat)) nat)))))
|
||||
;; (((nat -> (Unv 0)) -> nat) -> nat)
|
||||
(check-true (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat)))))
|
||||
;; Not sure if this is actually supposed to pass
|
||||
;; ((nat -> nat) -> nat) -> nat
|
||||
(check-false (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat))))))
|
||||
|
||||
;; Holds when the signature Δ and typing context Γ are well-formed.
|
||||
(define-judgment-form tt-typingL
|
||||
#:mode (wf I I)
|
||||
|
@ -798,63 +552,6 @@
|
|||
;; the constructor is well-formed.
|
||||
((x_c : (name t_c (in-hole Ξ (in-hole Θ x_D*)))) ...))) ∅)])
|
||||
|
||||
(module+ test
|
||||
(check-true (judgment-holds (wf ,Δ0 ∅)))
|
||||
(check-true (redex-match? tt-redL (in-hole Ξ (Unv 0)) (term (Unv 0))))
|
||||
(check-true (redex-match? tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat)))
|
||||
(term (Π (x : nat) nat))))
|
||||
(define (bindings-equal? l1 l2)
|
||||
(map set=? l1 l2))
|
||||
(check-pred
|
||||
(curry bindings-equal?
|
||||
(list (list
|
||||
(make-bind 'Ξ (term (Π (x : nat) hole)))
|
||||
(make-bind 'Φ (term hole))
|
||||
(make-bind 'Θ (term hole)))
|
||||
(list
|
||||
(make-bind 'Ξ (term hole))
|
||||
(make-bind 'Φ (term (Π (x : nat) hole)))
|
||||
(make-bind 'Θ (term hole)))))
|
||||
(map match-bindings (redex-match tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat)))
|
||||
(term (Π (x : nat) nat)))))
|
||||
(check-pred
|
||||
(curry bindings-equal?
|
||||
(list
|
||||
(list
|
||||
(make-bind 'Φ (term (Π (x : nat) hole)))
|
||||
(make-bind 'Θ (term hole)))))
|
||||
(map match-bindings (redex-match tt-redL (in-hole hole (in-hole Φ (in-hole Θ nat)))
|
||||
(term (Π (x : nat) nat)))))
|
||||
|
||||
(check-true
|
||||
(redex-match? tt-redL
|
||||
(in-hole hole (in-hole hole (in-hole hole nat)))
|
||||
(term nat)))
|
||||
(check-true
|
||||
(redex-match? tt-redL
|
||||
(in-hole hole (in-hole (Π (x : nat) hole) (in-hole hole nat)))
|
||||
(term (Π (x : nat) nat))))
|
||||
(check-holds (wf (∅ (nat : (Unv 0) ())) ∅))
|
||||
|
||||
(check-holds (wf ,Δ0 ∅))
|
||||
(check-holds (type-infer ∅ ∅ (Unv 0) U))
|
||||
(check-holds (type-infer ∅ (∅ nat : (Unv 0)) nat U))
|
||||
(check-holds (type-infer ∅ (∅ nat : (Unv 0)) (Π (x : nat) nat) U))
|
||||
(check-true (term (positive* nat (nat (Π (x : nat) nat)))))
|
||||
(check-holds
|
||||
(wf (∅ (nat : (Unv 0) ((zero : nat)))) ∅))
|
||||
(check-holds
|
||||
(wf (∅ (nat : (Unv 0) ((s : (Π (x : nat) nat))))) ∅))
|
||||
(check-holds (wf ,Δ ∅))
|
||||
|
||||
(check-holds (wf ,Δ3 ∅))
|
||||
(check-holds (wf ,Δ4 ∅))
|
||||
(check-holds (wf (∅ (truth : (Unv 0) ())) ∅))
|
||||
(check-holds (wf ∅ (∅ x : (Unv 0))))
|
||||
(check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : nat)))
|
||||
(check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : (Π (x : nat) nat)))))
|
||||
|
||||
|
||||
;; TODO: Bi-directional and inference?
|
||||
;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
|
||||
|
||||
|
@ -908,339 +605,3 @@
|
|||
(equivalent Δ t t_0)
|
||||
----------------- "DTR-Check"
|
||||
(type-check Δ Γ e t)])
|
||||
|
||||
(module+ test
|
||||
(check-holds (type-infer ∅ ∅ (Unv 0) (Unv 1)))
|
||||
(check-holds (type-infer ∅ (∅ x : (Unv 0)) (Unv 0) (Unv 1)))
|
||||
(check-holds (type-infer ∅ (∅ x : (Unv 0)) x (Unv 0)))
|
||||
(check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_1 : (Unv 0))
|
||||
(Π (x_3 : x_0) x_1) (Unv 0)))
|
||||
(check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) x_0 U_1))
|
||||
(check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2))
|
||||
(check-holds (unv-pred (Unv 0) (Unv 0) (Unv 0)))
|
||||
(check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t))
|
||||
|
||||
(check-holds (type-check ∅ ∅ (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0))))
|
||||
(check-holds (type-check ∅ ∅ (λ (y : (Unv 0)) (λ (x : y) x))
|
||||
(Π (y : (Unv 0)) (Π (x : y) y))))
|
||||
|
||||
(check-equal? (list (term (Unv 1)))
|
||||
(judgment-holds
|
||||
(type-infer ∅ ((∅ x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
|
||||
U)
|
||||
U))
|
||||
;; ---- Elim
|
||||
;; TODO: Clean up/Reorganize these tests
|
||||
(check-true
|
||||
(redex-match? tt-typingL
|
||||
(in-hole Θ_m (((elim x_D U) e_D) e_P))
|
||||
(term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
|
||||
(define Δtruth (term (∅ (truth : (Unv 0) ((T : truth))))))
|
||||
(check-holds (type-infer ,Δtruth ∅ truth (in-hole Ξ U)))
|
||||
(check-holds (type-infer ,Δtruth ∅ T (in-hole Θ_ai truth)))
|
||||
(check-holds (type-infer ,Δtruth ∅ (λ (x : truth) (Unv 1))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
|
||||
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δtruth truth (λ (x : truth) (Unv 1))))
|
||||
(term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole)))
|
||||
(check-holds (type-infer ,Δtruth ∅ (elim truth Type) t))
|
||||
(check-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0))
|
||||
T)
|
||||
(Unv 1)))
|
||||
(check-not-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
((((elim truth (Unv 1)) Type) Type) T)
|
||||
(Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0)) U))
|
||||
(check-holds
|
||||
(type-infer ∅ (∅ x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
|
||||
t))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ nat (in-hole Ξ U)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ zero (in-hole Θ_ai nat)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ (λ (x : nat) nat)
|
||||
(in-hole Ξ (Π (x : (in-hole Θ nat)) U))))
|
||||
(define-syntax-rule (nat-test syn ...)
|
||||
(check-holds (type-check ,Δ syn ...)))
|
||||
(nat-test ∅ (Π (x : nat) nat) (Unv 0))
|
||||
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
||||
(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x))) zero)
|
||||
nat)
|
||||
(nat-test ∅ nat (Unv 0))
|
||||
(nat-test ∅ zero nat)
|
||||
(nat-test ∅ s (Π (x : nat) nat))
|
||||
(nat-test ∅ (s zero) nat)
|
||||
;; TODO: Meta-function auto-currying and such
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ ((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
t))
|
||||
(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)
|
||||
nat)
|
||||
(nat-test (∅ n : nat)
|
||||
(((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n)
|
||||
nat)
|
||||
(check-holds
|
||||
(type-check (,Δ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
|
||||
(∅ n2 : nat)
|
||||
(((((elim nat (Unv 0)) (λ (x : nat) bool))
|
||||
btrue)
|
||||
(λ (x : nat) (λ (ih-x : bool) bfalse)))
|
||||
n2)
|
||||
bool))
|
||||
(check-not-holds
|
||||
(type-check ,Δ ∅
|
||||
((((elim nat (Unv 0)) nat) (s zero)) zero)
|
||||
nat))
|
||||
(define lam (term (λ (nat : (Unv 0)) nat)))
|
||||
(check-equivalent
|
||||
(Π (nat : (Unv 0)) (Unv 0))
|
||||
,(car (judgment-holds (type-infer ,Δ0 ∅ ,lam t) t)))
|
||||
(check-equivalent
|
||||
(Π (nat : (Unv 0)) (Unv 0))
|
||||
,(car (judgment-holds (type-infer ,Δ ∅ ,lam t) t)))
|
||||
(check-equivalent
|
||||
(Π (x : (Π (y : (Unv 0)) y)) nat)
|
||||
,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (x : (Π (y : (Unv 0)) y)) (x nat))
|
||||
t) t)))
|
||||
(check-equivalent
|
||||
(Π (y : (Unv 0)) (Unv 0))
|
||||
,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (y : (Unv 0)) y) t) t)))
|
||||
(check-equivalent
|
||||
(Unv 0)
|
||||
,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅
|
||||
((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat))
|
||||
(λ (y : (Unv 0)) y))
|
||||
t) t)))
|
||||
(check-equal?
|
||||
(list (term (Unv 0)) (term (Unv 1)))
|
||||
(judgment-holds
|
||||
(type-infer ,Δ4 ∅ (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
|
||||
U) U))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0))
|
||||
conj (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : P) (Π (y : Q) ((and P) Q)))))))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0)) S (Unv 0)))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
|
||||
(check-holds
|
||||
(type-check ,Δ4 (∅ S : (Unv 0)) (conj S)
|
||||
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
|
||||
(check-holds
|
||||
(type-check ,Δ4 ∅ (λ (S : (Unv 0)) (conj S))
|
||||
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
|
||||
(check-holds
|
||||
(type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
((and true) true)))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 ∅ and (in-hole Ξ U_D)))
|
||||
(check-holds
|
||||
(type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((conj true) true) tt) tt)
|
||||
(in-hole Θ and)))
|
||||
(check-holds
|
||||
(type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||
(check-holds
|
||||
(type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((((elim and (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
true))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) tt)))))
|
||||
true) true)
|
||||
((((conj true) true) tt) tt))
|
||||
true))
|
||||
(check-true (Γ? (term (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 ∅ and (in-hole Ξ U)))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q))
|
||||
ab (in-hole Θ and)))
|
||||
(check-true
|
||||
(redex-match? tt-redL
|
||||
(in-hole Ξ (Π (x : (in-hole Θ and)) U))
|
||||
(term (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A))))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ and)) U))))
|
||||
(check-holds
|
||||
(equivalent ,Δ4
|
||||
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))
|
||||
(Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0))))))
|
||||
(check-holds
|
||||
(type-infer ,Δ4 ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A))))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||
(check-holds
|
||||
(type-check ,Δ4
|
||||
(((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
|
||||
((((((elim and (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
P) Q) ab)
|
||||
((and Q) P)))
|
||||
(check-holds
|
||||
(type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A))))
|
||||
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))))
|
||||
(check-holds
|
||||
(type-infer (,Δ4 (true : (Unv 0) ((tt : true))))
|
||||
((∅ A : Type) B : Type)
|
||||
(conj B)
|
||||
t))
|
||||
(check-holds
|
||||
(type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((((elim and (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
true) true)
|
||||
((((conj true) true) tt) tt))
|
||||
((and true) true)))
|
||||
(define gamma (term (∅ temp863 : pre)))
|
||||
(check-holds (wf ,sigma ∅))
|
||||
(check-holds (wf ,sigma ,gamma))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma (Unv 0) t))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma pre t))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ,sigma ,gamma pre t))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) false (in-hole Ξ U_D)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) x (in-hole Θ false)))
|
||||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
|
||||
(check-true
|
||||
(redex-match? tt-typingL
|
||||
((in-hole Θ_m ((elim x_D U) e_P)) e_D)
|
||||
(term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x)))
|
||||
x))))
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma x : false)
|
||||
(((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
|
||||
(Π (x : (Unv 0)) x)))
|
||||
|
||||
;; nat-equal? tests
|
||||
(define zero?
|
||||
(term ((((elim nat Type) (λ (x : nat) bool))
|
||||
true)
|
||||
(λ (x : nat) (λ (x_ih : bool) false)))))
|
||||
(check-holds
|
||||
(type-check ,Δ ∅ ,zero? (Π (x : nat) bool)))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ (,zero? zero)))
|
||||
(term true))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ (,zero? (s zero))))
|
||||
(term false))
|
||||
(define ih-equal?
|
||||
(term ((((elim nat Type) (λ (x : nat) bool))
|
||||
false)
|
||||
(λ (x : nat) (λ (y : bool) (x_ih x))))))
|
||||
(check-holds
|
||||
(type-check ,Δ (∅ x_ih : (Π (x : nat) bool))
|
||||
,ih-equal?
|
||||
(Π (x : nat) bool)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ nat (Unv 0)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ bool (Unv 0)))
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0))))
|
||||
(define nat-equal?
|
||||
(term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool)))
|
||||
,zero?)
|
||||
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
|
||||
,ih-equal?)))))
|
||||
(check-holds
|
||||
(type-check ,Δ (∅ nat-equal? : (Π (x-D«4158» : nat) ((λ (x«4159» : nat) (Π (x«4160» : nat) bool)) x-D«4158»)))
|
||||
((nat-equal? zero) zero)
|
||||
bool))
|
||||
(check-holds
|
||||
(type-check ,Δ ∅
|
||||
,nat-equal?
|
||||
(Π (x : nat) (Π (y : nat) bool))))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ ((,nat-equal? zero) (s zero))))
|
||||
(term false))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ ((,nat-equal? (s zero)) zero)))
|
||||
(term false))
|
||||
|
||||
;; == tests
|
||||
(define Δ= (term (,Δ (== : (Π (A : (Unv 0)) (Π (a : A) (Π (b : A) (Unv 0))))
|
||||
((refl : (Π (A : (Unv 0)) (Π (a : A) (((== A) a) a)))))))))
|
||||
(check-true (Δ? Δ=))
|
||||
|
||||
(define refl-elim
|
||||
(term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
|
||||
A1)
|
||||
x1)
|
||||
y1))
|
||||
nat)))))
|
||||
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))
|
||||
(check-holds
|
||||
(type-check ,Δ= ∅ ,refl-elim nat))
|
||||
(check-true
|
||||
(redex-match?
|
||||
tt-redL
|
||||
(Δ (in-hole E (in-hole Θ ((elim x_D U) e_P))))
|
||||
(term (,Δ= ,refl-elim))))
|
||||
(check-true
|
||||
(redex-match?
|
||||
tt-redL
|
||||
(in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m)
|
||||
(term (((((hole
|
||||
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-ref-parameter-Ξ ,Δ= ==))
|
||||
(term (Π (A : Type) (Π (a : A) (Π (b : A) hole)))))
|
||||
(check-equal?
|
||||
(term (reduce ,Δ= ,refl-elim))
|
||||
(term zero)))
|
||||
|
|
Loading…
Reference in New Issue
Block a user