Moved Σ to core language, since elim is there.

This commit is contained in:
William J. Bowman 2015-09-30 16:21:03 -04:00
parent 2398bd1603
commit e08d006aba
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -34,12 +34,15 @@
(i ::= natural)
(U ::= (Unv i))
(x ::= variable-not-otherwise-mentioned)
(t e ::= (Π (x : t) t) (λ (x : t) t) (elim t t) x U (t t)))
(t e ::= (Π (x : t) t) (λ (x : t) t) (elim t t) x U (t t))
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
(Σ ::= (Σ (x : t ((x : t) ...)))))
(define x? (redex-match? ttL x))
(define t? (redex-match? ttL t))
(define e? (redex-match? ttL e))
(define U? (redex-match? ttL U))
(define Σ? (redex-match? ttL Σ))
(module+ test
(define-term Type (Unv 0))
@ -58,7 +61,78 @@
(check-true (U? (term Type)))
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
;; TODO: Rename these signatures, and use them in all future tests.
(define Σ (term (( (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))
(bool : (Unv 0) ((true : bool) (false : bool))))))
(define Σ0 (term ))
(define Σ3 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))
(define Σ4 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))))))
(check-true (Σ? Σ0))
(check-true (Σ? Σ))
(check-true (Σ? Σ4))
(check-true (Σ? Σ3))
(check-true (Σ? Σ4))
(define sigma (term (((((( (true : (Unv 0) ((T : true))))
(false : (Unv 0) ()))
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
()))
(nat : (Unv 0) ()))
(heap : (Unv 0) ()))
(pre : (Π (temp808 : heap) (Unv 0)) ()))))
(check-true (Σ? (term ( (true : (Unv 0) ((T : true)))))))
(check-true (Σ? (term ( (false : (Unv 0) ())))))
(check-true (Σ? (term ( (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())))))
(check-true (Σ? (term ( (nat : (Unv 0) ())))))
(check-true (Σ? (term ( (pre : (Π (temp808 : heap) (Unv 0)) ())))))
(check-true (Σ? (term (( (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())))))
(check-true (Σ? (term ((( (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())))))
(check-true (Σ? sigma)))
(define-metafunction ttL
append-Σ : Σ Σ -> Σ
[(append-Σ Σ ) Σ]
[(append-Σ Σ_2 (Σ_1 (x : t ((x_c : t_c) ...))))
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
;; Returns the inductively defined type that x constructs
;; NB: Depends on clause order
(define-metafunction ttL
constructor-of : Σ x -> x
[(constructor-of (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c)
x]
[(constructor-of (Σ (x_1 : t_1 ((x_c : t) ...))) x)
(constructor-of Σ x)])
(module+ test
(check-equal?
(term (constructor-of ,Σ zero))
(term nat))
(check-equal?
(term (constructor-of ,Σ s))
(term nat)))
;; Returns the constructors for the inductively defined type x_D in the signature Σ
(define-metafunction ttL
constructors-for : Σ x -> ((x : t) ...) or #f
;; NB: Depends on clause order
[(constructors-for x_D) #f]
[(constructors-for (Σ (x_D : t_D ((x : t) ...))) x_D)
((x : t) ...)]
[(constructors-for (Σ (x_1 : t_1 ((x : t) ...))) x_D)
(constructors-for Σ x_D)])
(module+ test
(check-equal?
(term (constructors-for ,Σ nat))
(term ((zero : nat) (s : (Π (x : nat) nat)))))
(check-equal?
(term (constructors-for ,sigma false))
(term ())))
;; 'A'
;; Types of Universes
@ -172,14 +246,10 @@
(E ::= hole (E e) (v E)
(Π (x : v) E)
(Π (x : E) e))
;; TODO: Σ should probably be moved to ttL, since elim is there.
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
(Σ ::= (Σ (x : t ((x : t) ...))))
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
;; NB: Does an apply context correspond to a substitution (γ)?
(Θ ::= hole (Θ e)) ;;(Apply context)
(Θv ::= hole (Θv v)))
(define Σ? (redex-match? tt-redL Σ))
(define Ξ? (redex-match? tt-redL Ξ))
(define Φ? (redex-match? tt-redL Φ))
(define Θ? (redex-match? tt-redL Θ))
@ -190,44 +260,7 @@
(module+ test
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (v? (term (refl Nat))))
(check-true (v? (term ((refl Nat) z))))
;; TODO: Rename these signatures, and use them in all future tests.
(define Σ (term (( (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))
(bool : (Unv 0) ((true : bool) (false : bool))))))
(define Σ0 (term ))
(define Σ3 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))
(define Σ4 (term ( (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))))))
(check-true (Σ? Σ0))
(check-true (Σ? Σ))
(check-true (Σ? Σ4))
(check-true (Σ? Σ3))
(check-true (Σ? Σ4))
(define sigma (term (((((( (true : (Unv 0) ((T : true))))
(false : (Unv 0) ()))
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
()))
(nat : (Unv 0) ()))
(heap : (Unv 0) ()))
(pre : (Π (temp808 : heap) (Unv 0)) ()))))
(check-true (Σ? (term ( (true : (Unv 0) ((T : true)))))))
(check-true (Σ? (term ( (false : (Unv 0) ())))))
(check-true (Σ? (term ( (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())))))
(check-true (Σ? (term ( (nat : (Unv 0) ())))))
(check-true (Σ? (term ( (pre : (Π (temp808 : heap) (Unv 0)) ())))))
(check-true (Σ? (term (( (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())))))
(check-true (Σ? (term ((( (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
())))))
(check-true (Σ? sigma)))
(define-metafunction tt-redL
append-Σ : Σ Σ -> Σ
[(append-Σ Σ ) Σ]
[(append-Σ Σ_2 (Σ_1 (x : t ((x_c : t_c) ...))))
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
(check-true (v? (term ((refl Nat) z)))))
;; TODO: Test
;; TODO: Maybe this should be called "apply-to-telescope"
@ -656,22 +689,6 @@
()))
(term hole)))
;; Returns the inductively defined type that x constructs
;; NB: Depends on clause order
(define-metafunction tt-redL
constructor-of : Σ x -> x
[(constructor-of (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...)))
x_c) x]
[(constructor-of (Σ (x_1 : t_1 ((x_c : t) ...))) x)
(constructor-of Σ x)])
(module+ test
(check-equal?
(term (constructor-of ,Σ zero))
(term nat))
(check-equal?
(term (constructor-of ,Σ s))
(term nat)))
;; TODO: Define generic traversals of Σ and Γ ?
(define-metafunction tt-redL
parameters-of : Σ x -> Ξ
@ -687,24 +704,6 @@
(term (parameters-of ,Σ4 and))
(term (Π (A : Type) (Π (B : Type) hole)))))
;; Returns the constructors for the inductively defined type x_D in
;; the signature Σ
(define-metafunction tt-redL
constructors-for : Σ x -> ((x : t) ...) or #f
;; NB: Depends on clause order
[(constructors-for x_D) #f]
[(constructors-for (Σ (x_D : t_D ((x : t) ...))) x_D)
((x : t) ...)]
[(constructors-for (Σ (x_1 : t_1 ((x : t) ...))) x_D)
(constructors-for Σ x_D)])
(module+ test
(check-equal?
(term (constructors-for ,Σ nat))
(term ((zero : nat) (s : (Π (x : nat) nat)))))
(check-equal?
(term (constructors-for ,sigma false))
(term ())))
;; Holds when an apply context Θ provides arguments that match the
;; telescope Ξ
(define-judgment-form tt-typingL