Moved Σ to core language, since elim is there.
This commit is contained in:
parent
2398bd1603
commit
e08d006aba
|
@ -34,12 +34,15 @@
|
|||
(i ::= natural)
|
||||
(U ::= (Unv i))
|
||||
(x ::= variable-not-otherwise-mentioned)
|
||||
(t e ::= (Π (x : t) t) (λ (x : t) t) (elim t t) x U (t t)))
|
||||
(t e ::= (Π (x : t) t) (λ (x : t) t) (elim t t) x U (t t))
|
||||
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
|
||||
(Σ ::= ∅ (Σ (x : t ((x : t) ...)))))
|
||||
|
||||
(define x? (redex-match? ttL x))
|
||||
(define t? (redex-match? ttL t))
|
||||
(define e? (redex-match? ttL e))
|
||||
(define U? (redex-match? ttL U))
|
||||
(define Σ? (redex-match? ttL Σ))
|
||||
|
||||
(module+ test
|
||||
(define-term Type (Unv 0))
|
||||
|
@ -58,7 +61,78 @@
|
|||
(check-true (U? (term Type)))
|
||||
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))))
|
||||
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
|
||||
;; TODO: Rename these signatures, and use them in all future tests.
|
||||
(define Σ (term ((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(bool : (Unv 0) ((true : bool) (false : bool))))))
|
||||
(define Σ0 (term ∅))
|
||||
(define Σ3 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))
|
||||
(define Σ4 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))))))
|
||||
(check-true (Σ? Σ0))
|
||||
(check-true (Σ? Σ))
|
||||
(check-true (Σ? Σ4))
|
||||
(check-true (Σ? Σ3))
|
||||
(check-true (Σ? Σ4))
|
||||
(define sigma (term ((((((∅ (true : (Unv 0) ((T : true))))
|
||||
(false : (Unv 0) ()))
|
||||
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
()))
|
||||
(nat : (Unv 0) ()))
|
||||
(heap : (Unv 0) ()))
|
||||
(pre : (Π (temp808 : heap) (Unv 0)) ()))))
|
||||
(check-true (Σ? (term (∅ (true : (Unv 0) ((T : true)))))))
|
||||
(check-true (Σ? (term (∅ (false : (Unv 0) ())))))
|
||||
(check-true (Σ? (term (∅ (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
(check-true (Σ? (term (∅ (nat : (Unv 0) ())))))
|
||||
(check-true (Σ? (term (∅ (pre : (Π (temp808 : heap) (Unv 0)) ())))))
|
||||
|
||||
(check-true (Σ? (term ((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())))))
|
||||
(check-true (Σ? (term (((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))
|
||||
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
(check-true (Σ? sigma)))
|
||||
|
||||
(define-metafunction ttL
|
||||
append-Σ : Σ Σ -> Σ
|
||||
[(append-Σ Σ ∅) Σ]
|
||||
[(append-Σ Σ_2 (Σ_1 (x : t ((x_c : t_c) ...))))
|
||||
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
|
||||
|
||||
;; Returns the inductively defined type that x constructs
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction ttL
|
||||
constructor-of : Σ x -> x
|
||||
[(constructor-of (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c)
|
||||
x]
|
||||
[(constructor-of (Σ (x_1 : t_1 ((x_c : t) ...))) x)
|
||||
(constructor-of Σ x)])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (constructor-of ,Σ zero))
|
||||
(term nat))
|
||||
(check-equal?
|
||||
(term (constructor-of ,Σ s))
|
||||
(term nat)))
|
||||
|
||||
;; Returns the constructors for the inductively defined type x_D in the signature Σ
|
||||
(define-metafunction ttL
|
||||
constructors-for : Σ x -> ((x : t) ...) or #f
|
||||
;; NB: Depends on clause order
|
||||
[(constructors-for ∅ x_D) #f]
|
||||
[(constructors-for (Σ (x_D : t_D ((x : t) ...))) x_D)
|
||||
((x : t) ...)]
|
||||
[(constructors-for (Σ (x_1 : t_1 ((x : t) ...))) x_D)
|
||||
(constructors-for Σ x_D)])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (constructors-for ,Σ nat))
|
||||
(term ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(check-equal?
|
||||
(term (constructors-for ,sigma false))
|
||||
(term ())))
|
||||
|
||||
;; 'A'
|
||||
;; Types of Universes
|
||||
|
@ -172,14 +246,10 @@
|
|||
(E ::= hole (E e) (v E)
|
||||
(Π (x : v) E)
|
||||
(Π (x : E) e))
|
||||
;; TODO: Σ should probably be moved to ttL, since elim is there.
|
||||
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
|
||||
(Σ ::= ∅ (Σ (x : t ((x : t) ...))))
|
||||
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
|
||||
(Ξ Φ ::= hole (Π (x : t) Ξ)) ;;(Telescope)
|
||||
;; NB: Does an apply context correspond to a substitution (γ)?
|
||||
(Θ ::= hole (Θ e)) ;;(Apply context)
|
||||
(Θv ::= hole (Θv v)))
|
||||
(define Σ? (redex-match? tt-redL Σ))
|
||||
(define Ξ? (redex-match? tt-redL Ξ))
|
||||
(define Φ? (redex-match? tt-redL Φ))
|
||||
(define Θ? (redex-match? tt-redL Θ))
|
||||
|
@ -190,44 +260,7 @@
|
|||
(module+ test
|
||||
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (v? (term (refl Nat))))
|
||||
(check-true (v? (term ((refl Nat) z))))
|
||||
;; TODO: Rename these signatures, and use them in all future tests.
|
||||
(define Σ (term ((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(bool : (Unv 0) ((true : bool) (false : bool))))))
|
||||
(define Σ0 (term ∅))
|
||||
(define Σ3 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))
|
||||
(define Σ4 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))))))
|
||||
(check-true (Σ? Σ0))
|
||||
(check-true (Σ? Σ))
|
||||
(check-true (Σ? Σ4))
|
||||
(check-true (Σ? Σ3))
|
||||
(check-true (Σ? Σ4))
|
||||
(define sigma (term ((((((∅ (true : (Unv 0) ((T : true))))
|
||||
(false : (Unv 0) ()))
|
||||
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
()))
|
||||
(nat : (Unv 0) ()))
|
||||
(heap : (Unv 0) ()))
|
||||
(pre : (Π (temp808 : heap) (Unv 0)) ()))))
|
||||
(check-true (Σ? (term (∅ (true : (Unv 0) ((T : true)))))))
|
||||
(check-true (Σ? (term (∅ (false : (Unv 0) ())))))
|
||||
(check-true (Σ? (term (∅ (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
(check-true (Σ? (term (∅ (nat : (Unv 0) ())))))
|
||||
(check-true (Σ? (term (∅ (pre : (Π (temp808 : heap) (Unv 0)) ())))))
|
||||
|
||||
(check-true (Σ? (term ((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())))))
|
||||
(check-true (Σ? (term (((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))
|
||||
(equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0)))
|
||||
())))))
|
||||
(check-true (Σ? sigma)))
|
||||
|
||||
(define-metafunction tt-redL
|
||||
append-Σ : Σ Σ -> Σ
|
||||
[(append-Σ Σ ∅) Σ]
|
||||
[(append-Σ Σ_2 (Σ_1 (x : t ((x_c : t_c) ...))))
|
||||
((append-Σ Σ_2 Σ_1) (x : t ((x_c : t_c) ...)))])
|
||||
(check-true (v? (term ((refl Nat) z)))))
|
||||
|
||||
;; TODO: Test
|
||||
;; TODO: Maybe this should be called "apply-to-telescope"
|
||||
|
@ -656,22 +689,6 @@
|
|||
()))
|
||||
(term hole)))
|
||||
|
||||
;; Returns the inductively defined type that x constructs
|
||||
;; NB: Depends on clause order
|
||||
(define-metafunction tt-redL
|
||||
constructor-of : Σ x -> x
|
||||
[(constructor-of (Σ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...)))
|
||||
x_c) x]
|
||||
[(constructor-of (Σ (x_1 : t_1 ((x_c : t) ...))) x)
|
||||
(constructor-of Σ x)])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (constructor-of ,Σ zero))
|
||||
(term nat))
|
||||
(check-equal?
|
||||
(term (constructor-of ,Σ s))
|
||||
(term nat)))
|
||||
|
||||
;; TODO: Define generic traversals of Σ and Γ ?
|
||||
(define-metafunction tt-redL
|
||||
parameters-of : Σ x -> Ξ
|
||||
|
@ -687,24 +704,6 @@
|
|||
(term (parameters-of ,Σ4 and))
|
||||
(term (Π (A : Type) (Π (B : Type) hole)))))
|
||||
|
||||
;; Returns the constructors for the inductively defined type x_D in
|
||||
;; the signature Σ
|
||||
(define-metafunction tt-redL
|
||||
constructors-for : Σ x -> ((x : t) ...) or #f
|
||||
;; NB: Depends on clause order
|
||||
[(constructors-for ∅ x_D) #f]
|
||||
[(constructors-for (Σ (x_D : t_D ((x : t) ...))) x_D)
|
||||
((x : t) ...)]
|
||||
[(constructors-for (Σ (x_1 : t_1 ((x : t) ...))) x_D)
|
||||
(constructors-for Σ x_D)])
|
||||
(module+ test
|
||||
(check-equal?
|
||||
(term (constructors-for ,Σ nat))
|
||||
(term ((zero : nat) (s : (Π (x : nat) nat)))))
|
||||
(check-equal?
|
||||
(term (constructors-for ,sigma false))
|
||||
(term ())))
|
||||
|
||||
;; Holds when an apply context Θ provides arguments that match the
|
||||
;; telescope Ξ
|
||||
(define-judgment-form tt-typingL
|
||||
|
|
Loading…
Reference in New Issue
Block a user