Reorganizing eliminating typing

This commit is contained in:
William J. Bowman 2015-10-01 10:41:56 -04:00
parent 0ea4c0447b
commit e69920907d
No known key found for this signature in database
GPG Key ID: DDD48D26958F0D1A

View File

@ -355,32 +355,59 @@
;; Σ-constructor-method-telescope : Σ x_D x_c t_P -> Ξ
;; Σ-constructor-inductive-telescope : Σ x_D x_c -> Ξ
;; Σ-constructor-inductive-hypotheses : Σ x_D x_c t_P -> Ξ
;; Returns the inductive arguments to the constructor x_ci of the
;; inducitvely defined type x_D
;; Returns the inductive hypotheses required for eliminating the
;; inductively defined type x_D with motive t_P, where the telescope
;; Φ are the inductive arguments to a constructor for x_D
;; Inner loop for Σ-constructor-noninductive-telescope
(define-metafunction tt-ctxtL
hypotheses-for : x t Φ -> Φ
[(hypotheses-for x_D t_P hole) hole]
[(hypotheses-for x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)))
noninductive-loop : x Φ -> Φ
[(noninductive-loop x_D hole) hole]
[(noninductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(noninductive-loop x_D Φ_1)]
[(noninductive-loop x_D (Π (x : t) Φ_1))
(Π (x : t) (noninductive-loop x_D Φ_1))])
;; Returns the noninductive arguments to the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Σ-constructor-noninductive-telescope : Σ x x -> Ξ
[(Σ-constructor-noninductive-telescope Σ x_D x_ci)
(noninductive-loop (Σ-constructor-telescope))])
;; Inner loop for Σ-constructor-inductive-telescope
;; NB: Depends on clause order
(define-metafunction tt-ctxtL
inductive-loop : x Φ -> Φ
[(inductive-loop x_D hole) hole]
[(inductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-loop x_D Φ_1))]
[(inductive-loop x_D (Π (x : t) Φ_1))
(inductive-loop x_D Φ_1)])
;; Returns the inductive arguments to the constructor x_ci of the inducitvely defined type x_D
(define-metafunction tt-ctxtL
Σ-constructor-inductive-telescope : Σ x x -> Ξ
[(Σ-constructor-inductive-telescope Σ x_D x_ci)
(inductive-loop (Σ-constructor-telescope))])
;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with
;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D
(define-metafunction tt-ctxtL
hypotheses-loop : x t Φ -> Φ
[(hypotheses-loop x_D t_P hole) hole]
[(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)))
(Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x))))
(hypotheses-for x_D t_P Φ_1))
(hypotheses-loop x_D t_P Φ_1))
(where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))])
;; Returns the inductive arguments to a constructor for the
;; inducitvely defined type x_D, where the telescope Φ are the
;; non-parameter arguments to the constructor.
;; Returns the inductive hypotheses required for the elimination method of constructor x_ci for
;; inductive type x_D, when eliminating with motive t_P.
(define-metafunction tt-ctxtL
inductive-args : x Φ -> Φ
[(inductive-args x_D hole) hole]
[(inductive-args x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-args x_D Φ_1))]
;; NB: Depends on clause order
[(inductive-args x_D (Π (x : t) Φ_1))
(inductive-args x_D Φ_1)])
Σ-constructor-inductive-hypotheses : Σ x x t -> Ξ
[(Σ-constructor-inductive-hypotheses Σ x_D x_ci t_P)
(hypotheses-loop x_D t_P (Σ-constructor-inductive-telescope Σ x_D x_ci))])
;; Returns the methods required for eliminating the inductively
;; defined type x_D, whose constructors are ((x_ci : t_ci) ...), with motive t_P.
;; Returns the methods required for eliminating the inductively defined type x_D, whose constructors
;; are ((x_ci : t_ci) ...), with motive t_P.
(define-metafunction tt-ctxtL
methods-for : x t ((x : t) ...) -> Ξ
[(methods-for x_D t_P ()) hole]
@ -388,7 +415,7 @@
(x_c : t) ...)))
(Π (x_mi : (in-hole Φ (in-hole Φ_h ((in-hole Θ t_P) (Ξ-apply Φ x_ci)))))
(methods-for x_D t_P ((x_c : t) ...)))
(where Φ_h (hypotheses-for x_D t_P (inductive-args x_D Φ)))
(where Φ_h (hypotheses-loop x_D t_P (inductive-loop x_D Φ)))
(where x_mi ,(variable-not-in (term (x_D t_P any_0)) 'x-mi))])
(module+ test