Draft of STLC with type system
* STLC + syntax for writing STLC terms naturally, without explicitly applying inductive constructors. * Complete STLC type system, although it's not quite correct yet.
This commit is contained in:
parent
862d530b42
commit
f94894aacf
125
example.rkt
125
example.rkt
|
@ -258,9 +258,124 @@
|
|||
(prj : (->* nat term term))
|
||||
(app : (->* term term term)))
|
||||
|
||||
(define-syntax (λ syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (x : t) e)
|
||||
#'(lam (v x) t e)]))
|
||||
;; Now, fancy syntax to write these terms in a more natural syntax,
|
||||
;; instead of via applications of inductives. Also, use variables names
|
||||
;; and automatically get de Bruijn indecies.
|
||||
(begin-for-syntax
|
||||
(define index #'z))
|
||||
(define-syntax (begin-stlc syn)
|
||||
(set! index #'z)
|
||||
(let stlc ([syn (syntax-case syn () [(_ e) #'e])])
|
||||
(syntax-case syn (lambda : prj * -> quote)
|
||||
[(lambda (x : t) e)
|
||||
(let ([oldindex index])
|
||||
(set! index #`(s #,index))
|
||||
#`((lambda (x : term)
|
||||
(lam (v #,oldindex) #,(stlc #'t) #,(stlc #'e)))
|
||||
(tvar (v #,oldindex))))]
|
||||
[(quote (e1 e2))
|
||||
#`(pair #,(stlc #'e1) #,(stlc #'e2))]
|
||||
[(prj i e1)
|
||||
#`(prj i #,(stlc #'e1))]
|
||||
[() #'unitv]
|
||||
[(t1 * t2)
|
||||
#`(Pair #,(stlc #'t1) #,(stlc #'t2))]
|
||||
[(t1 -> t2)
|
||||
#`(Fun #,(stlc #'t1) #,(stlc #'t2))]
|
||||
[(e1 e2)
|
||||
#`(app #,(stlc #'e1) #,(stlc #'e2))]
|
||||
[e
|
||||
(if (eq? 1 (syntax->datum #'e))
|
||||
#'Unit
|
||||
#'e)])))
|
||||
|
||||
(check-equal? (lam (v z) Unit unitv) (λ (z : Unit) unitv))
|
||||
(check-equal?
|
||||
(begin-stlc (lambda (x : 1) x))
|
||||
(lam (v z) Unit (tvar (v z))))
|
||||
(check-equal?
|
||||
(begin-stlc ((lambda (x : 1) x) ()))
|
||||
(app (lam (v z) Unit (tvar (v z))) unitv))
|
||||
(check-equal?
|
||||
(begin-stlc '(() ()))
|
||||
(pair unitv unitv))
|
||||
|
||||
;; ---------------
|
||||
|
||||
(data gamma : Type
|
||||
(emp-gamma : gamma)
|
||||
(ext-gamma : (->* gamma var type gamma)))
|
||||
|
||||
(data maybe : (forall (A : Type) Type)
|
||||
(none : (forall (A : Type) (maybe A)))
|
||||
(some : (forall* (A : Type) (a : A) (maybe A))))
|
||||
|
||||
(data bool : Type
|
||||
(btrue : bool)
|
||||
(bfalse : bool))
|
||||
|
||||
(define-syntax (if syn)
|
||||
(syntax-case syn ()
|
||||
[(_ t s f)
|
||||
#'(case t
|
||||
[btrue s]
|
||||
[bfalse f])]))
|
||||
|
||||
(define-syntax (define-rec syn)
|
||||
(syntax-case syn (:)
|
||||
[(_ (name (a : t) ... : t_res) body)
|
||||
#'(define name (fix (name : (forall* (a : t) ... t_res))
|
||||
(lambda* (a : t) ... body)))]))
|
||||
|
||||
(define-rec (nat-equal? (n1 : nat) (n2 : nat) : bool)
|
||||
(case* n1
|
||||
[z (case* n2
|
||||
[z btrue]
|
||||
[(s (n3 : nat)) bfalse])]
|
||||
[(s (n3 : nat))
|
||||
(case* n2
|
||||
[z btrue]
|
||||
[(s (n4 : nat)) (nat-equal? n3 n4)])]))
|
||||
|
||||
(define (var-equal? (v1 : var) (v2 : var))
|
||||
(case* v1
|
||||
[(v (n1 : nat))
|
||||
(case* v2
|
||||
[(v (n2 : nat))
|
||||
(nat-equal? n1 n2)])]))
|
||||
|
||||
(define-rec (lookup-gamma (g : gamma) (x : var) : (maybe type))
|
||||
(case* g
|
||||
[emp-gamma (none type)]
|
||||
[(ext-gamma (g1 : gamma) (v1 : var) (t1 : type))
|
||||
(if (var-equal? v1 x)
|
||||
(some type t1)
|
||||
(lookup-gamma g1 x))]))
|
||||
|
||||
(define extend-gamma ext-gamma)
|
||||
|
||||
(data == : (forall* (A : Type) (x : A) (-> A Type))
|
||||
(refl : (forall* (A : Type) (x : A) (== A x x))))
|
||||
|
||||
(data has-type : (->* gamma term type Type)
|
||||
(T-Unit : (forall* (g : gamma) (has-type g unitv Unit)))
|
||||
(T-Var : (forall* (g : gamma) (x : var) (t : type)
|
||||
(-> (== (maybe type) (lookup-gamma g x) (some type t))
|
||||
(has-type gamma (tvar x) t))))
|
||||
(T-Pair : (forall* (g : gamma) (e1 : term) (e2 : term) (t1 : type) (t2 : type)
|
||||
(->* (has-type gamma e1 t1)
|
||||
(has-type gamma e2 t2)
|
||||
(has-type gamma (pair e1 e2) (Pair t1 t2)))))
|
||||
(T-Prj1 : (forall* (g : gamma) (e : term) (t1 : type) (t2 : type)
|
||||
(->* (has-type gamma e (Pair t1 t2))
|
||||
(has-type gamma (prj z e) t1))))
|
||||
(T-Prj2 : (forall* (g : gamma) (e : term) (t1 : type) (t2 : type)
|
||||
(->* (has-type gamma e (Pair t1 t2))
|
||||
(has-type gamma (prj (s z) e) t2))))
|
||||
(T-Fun : (forall* (g : gamma) (e1 : term) (t1 : type) (t2 : type) (x : var)
|
||||
(-> (has-type (extend-gamma gamma x t1) e1 t2)
|
||||
(has-type gamma (lam var t1 e1) (Fun t1 t2)))))
|
||||
(T-App : (forall* (g : gamma) (e1 : term) (e2 : term) (t1 : type)
|
||||
(t2 : type)
|
||||
(->* (has-type gamma e1 (Fun t1 t2))
|
||||
(has-type gamma e2 t1)
|
||||
(has-type gamma (app e1 e2) t2)))))
|
||||
|
|
Loading…
Reference in New Issue
Block a user