Compare commits

...

2 Commits

Author SHA1 Message Date
William J. Bowman
c07e93a870
Nuts to this sanity check 2015-10-06 02:32:09 -04:00
William J. Bowman
02b2755c06
Found issues with elim reduction
Trying to write macros that provide better error messages, I found
issues with eliminator reduction. Can't define when a partially applied
eliminator is a value via grammar alone, but need to in order to give
deterministic reduction relation...
2015-10-06 02:00:45 -04:00
2 changed files with 73 additions and 9 deletions

View File

@ -500,6 +500,18 @@
(term (Σ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))
(term hole)))
;; Returns the number of arguments expected by the eliminator for type
;; x_D, counting the motive, the methods, the parameters, and the discriminant
(define-metafunction tt-ctxtL
Σ-elim-arity : Σ x_D -> natural
[(Σ-elim-arity Σ x_D)
,(let ([cs (term (Σ-ref-constructors Σ x_D))])
(unless cs
(error 'Σ-elim-arity "~a is not defined in ~a" (term x_D) (term Σ)))
(+ 1 (length cs)
(term (Ξ-length (Σ-ref-parameter-Ξ Σ x_D)))
1))])
;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result
;; is in universe U.
;;
@ -539,6 +551,7 @@
;; The types of the methods for this inductive.
(where Ξ_m (Σ-methods-telescope Σ x_D x_P))])
;; TODO: This might belong in the next section, since it's related to evaluation
;; Generate recursive applications of the eliminator for each inductive argument of type x_D.
;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor
@ -578,11 +591,15 @@
;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the
;;; inductively defined type x with a motive whose result is in universe U
;; Necessary to get the side-condition patterns to work.
(define-extended-language tt-redL tt-ctxtL
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However,
;; determining whether or not it is partially applied cannot be done with the grammar alone.
(v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U)))
(Θv ::= hole (Θv v))
(v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x)
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim.
(in-hole Θv (elim x U))
#;(side-condition
(not (equal? (term (Θ-length Θv_0))
(Σ-elim-arity ?? (term x_0))))))
;; call-by-value, plus reduce under Π (helps with typing checking)
(E ::= hole (E e) (v E) (Π (x : v) E) (Π (x : E) e)))
@ -595,6 +612,33 @@
(check-true (v? (term (refl Nat))))
(check-true (v? (term ((refl Nat) z)))))
(define-metafunction tt-redL
elim-Θv-really : Σ Θv -> #t or #f
[(elim-Θv-really Σ hole) #t]
[(elim-Θv-really Σ (Θv (in-hole Θv_1 (elim x_D U))))
,(and
(not (equal? (term (Θ-length Θv_1))
(term (Σ-elim-arity Σ x_D))))
(term (elim-Θv-really Σ Θv_1))
(term (elim-Θv-really Σ Θv)))]
[(elim-Θv-really Σ (Θv v))
(elim-Θv-really Σ Θv)])
(module+ test
(check-true
(term (elim-Θv-really ,Σ (hole (elim nat Type)))))
(check-true
(term (elim-Θv-really ,Σ (hole ((elim nat Type) (λ (x : nat) nat))))))
(check-true
(term (elim-Θv-really ,Σ (hole (((elim nat Type) (λ (x : nat) nat)) zero)))))
(check-true
(term (elim-Θv-really ,Σ (hole ((((elim nat Type) (λ (x : nat) nat)) zero)
(λ (x : nat) (λ (ih : nat) zero)))))))
(check-false
(term (elim-Θv-really ,Σ (hole (((((elim nat Type) (λ (x : nat) nat)) zero)
(λ (x : nat) (λ (ih : nat) zero)))
zero))))))
(define tt-->
(reduction-relation tt-redL
(--> (Σ (in-hole E ((any (x : t_0) t_1) t_2)))
@ -617,8 +661,10 @@
| Unfortunately, Θ contexts turn all this inside out:
| TODO: Write better abstractions for this notation
|#
;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and
;; the discriminant: the constructor x_ci applied to its argument Θv_i
;; Check that Θv only contains partially applied elims.
(side-condition (term (elim-Θv-really Σ Θv)))
;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and
;; the discriminant: the constructor x_ci applied to its argument Θv_i
(where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv)
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
;; arguments.
@ -648,8 +694,8 @@
(where (_ e_r)
,(let ([r (apply-reduction-relation* tt--> (term (Σ e)) #:cache-all? #t)])
;; Efficient check for (= (length r) 1)
(unless (null? (cdr r))
(error "Church-Rosser broken" r))
#;(unless (null? (cdr r))
(error "Church-Rosser broken" r (term e)))
(car r)))])
;; TODO: Move equivalence up here, and use in these tests.

View File

@ -48,7 +48,7 @@
(syntax-rules (:)
[(_ (a : t) (ar : tr) ... b)
(forall (a : t)
(forall* (ar : tr) ... b))]
(forall* (ar : tr) ... b))]
[(_ b) b]))
(define-syntax lambda*
@ -62,7 +62,25 @@
(syntax-case syn ()
[(_ e) #'e]
[(_ e1 e2)
#'(real-app e1 e2)]
(let ([f-type (type-infer/syn #'e1)])
(syntax-case f-type ()
[(Π (x : t1) t2)
(begin
(unless (type-check/syn? #'e2 #'t1)
(raise-syntax-error
'#%app
(format "Operand '~a' does not have expected type; expected '~a' but inferred '~a'"
(cur->datum #'e2)
(cur->datum #'t1)
(cur->datum (type-infer/syn #'e2)))
(quasisyntax/loc syn (e1 e2))))
#'(real-app e1 e2))]
[_ (raise-syntax-error
'#%app
(format "Operator '~a' does not have function type; inferred type was: '~a'"
(cur->datum #'e1)
(cur->datum f-type))
(quasisyntax/loc syn (e1 e2)))]))]
[(_ e1 e2 e3 ...)
#'(#%app (#%app e1 e2) e3 ...)]))