Compare commits
3 Commits
master
...
faster-eli
Author | SHA1 | Date | |
---|---|---|---|
![]() |
c5cbf9f9ea | ||
![]() |
69df6eeef0 | ||
![]() |
5505b14e2f |
|
@ -17,7 +17,7 @@ Edwin C. Brady.
|
|||
@(define curnel-eval (curnel-sandbox "(require cur/stdlib/nat cur/stdlib/bool cur/stdlib/prop)"))
|
||||
|
||||
@defform*[((Type n)
|
||||
Type)]{
|
||||
Type)]{
|
||||
Define the universe of types at level @racket[n], where @racket[n] is any natural number.
|
||||
@racket[Type] is a synonym for @racket[(Type 0)]. Cur is impredicative
|
||||
in @racket[(Type 0)], although this is likely to change to a more
|
||||
|
@ -91,13 +91,16 @@ For instance, Cur does not currently perform strict positivity checking.
|
|||
((((conj Bool) Bool) true) false)]
|
||||
}
|
||||
|
||||
@defform[(elim type motive-universe)]{
|
||||
Returns the inductive eliminator for @racket[type] where the @racket[motive-universe] is the universe
|
||||
of the motive.
|
||||
The eliminator expects the next argument to be the motive, the next @racket[N] arguments to be the methods for
|
||||
each of the @racket[N] constructors of the inductive type @racket[type], the next @racket[P] arguments
|
||||
to be the parameters @racket[p_0 ... p_P] of the inductive @racket[type], and the final argument to be the term to
|
||||
eliminate of type @racket[(type p_0 ... p_P)].
|
||||
@defform[(elim inductive-type motive (index ...) (method ...) disc)]{
|
||||
Fold over the term @racket[disc] of the inductively defined type @racket[inductive-type].
|
||||
The @racket[motive] is a function that expects the indices of the inductive
|
||||
type and a term of the inductive type and produces the type that this
|
||||
fold returns.
|
||||
The type of @racket[disc] is @racket[(inductive-type index ...)].
|
||||
@racket[elim] takes one method for each constructor of @racket[inductive-type].
|
||||
Each @racket[method] expects the arguments for its corresponding constructor,
|
||||
and the inductive hypotheses generated by recursively eliminating all recursive
|
||||
arguments of the constructor.
|
||||
|
||||
The following example runs @racket[(sub1 (s z))].
|
||||
|
||||
|
@ -105,11 +108,11 @@ The following example runs @racket[(sub1 (s z))].
|
|||
(data Nat : Type
|
||||
(z : Nat)
|
||||
(s : (Π (n : Nat) Nat)))
|
||||
(((((elim Nat Type)
|
||||
(λ (x : Nat) Nat))
|
||||
z)
|
||||
(λ (n : Nat) (λ (IH : Nat) n)))
|
||||
(s z))]
|
||||
(elim Nat (λ (x : Nat) Nat)
|
||||
()
|
||||
(z
|
||||
(λ (n : Nat) (λ (IH : Nat) n)))
|
||||
(s z))]
|
||||
}
|
||||
|
||||
@defform[(define id expr)]{
|
||||
|
@ -120,9 +123,11 @@ Binds @racket[id] to the result of @racket[expr].
|
|||
(z : Nat)
|
||||
(s : (Π (n : Nat) Nat)))
|
||||
(define sub1 (λ (n : Nat)
|
||||
(((((elim Nat Type) (λ (x : Nat) Nat))
|
||||
z)
|
||||
(λ (n : Nat) (λ (IH : Nat) n))) n)))
|
||||
(elim Nat (λ (x : Nat) Nat)
|
||||
()
|
||||
(z
|
||||
(λ (n : Nat) (λ (IH : Nat) n)))
|
||||
n)))
|
||||
(sub1 (s (s z)))
|
||||
(sub1 (s z))
|
||||
(sub1 z)]
|
||||
|
|
|
@ -76,10 +76,10 @@ Runs the Cur term @racket[syn] for one step.
|
|||
(eval:alts (cur-step #'((λ (x : Type) x) Bool))
|
||||
(eval:result @racket[#'Bool] "" ""))
|
||||
(eval:alts (cur-step #'(sub1 (s (s z))))
|
||||
(eval:result @racket[#'(((((elim Nat (Type 0))
|
||||
(λ (x2 : Nat) Nat)) z)
|
||||
(λ (x2 : Nat) (λ (ih-n2 : Nat) x2)))
|
||||
(s (s z)))] "" ""))
|
||||
(eval:result @racket[#'(elim Nat (λ (x2 : Nat) Nat)
|
||||
()
|
||||
(z (λ (x2 : Nat) (λ (ih-n2 : Nat) x2)))
|
||||
(s (s z)))] "" ""))
|
||||
]
|
||||
}
|
||||
|
||||
|
|
|
@ -22,7 +22,7 @@ A syntactic form that expands to the inductive eliminator for @racket[Bool]. Thi
|
|||
|
||||
@examples[#:eval curnel-eval
|
||||
(if true false true)
|
||||
(elim Bool Type (λ (x : Bool) Bool) false true true)]
|
||||
(elim Bool (λ (x : Bool) Bool) () (false true) true)]
|
||||
}
|
||||
|
||||
@defproc[(not [x Bool])
|
||||
|
|
|
@ -82,17 +82,6 @@ a @racket[(: name type)] form appears earlier in the module.
|
|||
(define (id A a) a)]
|
||||
}
|
||||
|
||||
@defform[(elim type motive-result-type e ...)]{
|
||||
Like the @racket[elim] provided by @racketmodname[cur], but supports
|
||||
automatically curries the remaining arguments @racket[e ...].
|
||||
|
||||
@examples[#:eval curnel-eval
|
||||
(elim Bool Type (lambda (x : Bool) Bool)
|
||||
false
|
||||
true
|
||||
true)]
|
||||
}
|
||||
|
||||
@defform*[((define-type name type)
|
||||
(define-type (name (a : t) ...) body))]{
|
||||
Like @racket[define], but uses @racket[forall] instead of @racket[lambda].
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#lang info
|
||||
(define collection 'multi)
|
||||
(define deps '("base" "racket-doc"))
|
||||
(define build-deps '("scribble-lib" ("cur-lib" #:version "0.2") "sandbox-lib"))
|
||||
(define build-deps '("scribble-lib" ("cur-lib" #:version "0.4") "sandbox-lib"))
|
||||
(define pkg-desc "Documentation for \"cur\".")
|
||||
(define pkg-authors '(wilbowma))
|
||||
|
|
|
@ -27,10 +27,10 @@
|
|||
(i j k ::= natural)
|
||||
(U ::= (Unv i))
|
||||
(D x c ::= variable-not-otherwise-mentioned)
|
||||
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e) (elim D U))
|
||||
;; Δ (signature). (inductive-name : type ((constructor : type) ...))
|
||||
;; NB: Δ is a map from a name x to a pair of it's type and a map of constructor names to their types
|
||||
(Δ ::= ∅ (Δ (D : t ((c : t) ...))))
|
||||
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e)
|
||||
;; (elim inductive-type motive (indices ...) (methods ...) discriminant)
|
||||
(elim D e (e ...) (e ...) e))
|
||||
#:binding-forms
|
||||
(λ (x : t) e #:refers-to x)
|
||||
(Π (x : t_0) t_1 #:refers-to x))
|
||||
|
@ -233,6 +233,11 @@
|
|||
[(list->Θ (e e_r ...))
|
||||
(in-hole (list->Θ (e_r ...)) (hole e))])
|
||||
|
||||
(define-metafunction tt-ctxtL
|
||||
apply : e e ... -> e
|
||||
[(apply e_f e ...)
|
||||
(in-hole (list->Θ (e ...)) e_f)])
|
||||
|
||||
;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole.
|
||||
(define-metafunction tt-ctxtL
|
||||
Θ-ref : Θ natural -> e or #f
|
||||
|
@ -323,36 +328,6 @@
|
|||
(hypotheses-loop x_D t_P Φ_1))
|
||||
(where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))])
|
||||
|
||||
;; Returns the inductive hypotheses required for the elimination method of constructor x_ci for
|
||||
;; inductive type x_D, when eliminating with motive t_P.
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-inductive-hypotheses : Δ x x t -> Ξ
|
||||
[(Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P)
|
||||
(hypotheses-loop x_D t_P (Δ-constructor-inductive-telescope Δ x_D x_ci))])
|
||||
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-method-telescope : Δ x x t -> Ξ
|
||||
[(Δ-constructor-method-telescope Δ x_D x_ci t_P)
|
||||
(Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci)))))
|
||||
hole)
|
||||
(where Θ_p (Δ-constructor-parameters Δ x_D x_ci))
|
||||
(where Ξ_a (Δ-constructor-telescope Δ x_D x_ci))
|
||||
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P))
|
||||
(where x_mi ,(variable-not-in (term (t_P Δ)) 'x-mi))])
|
||||
|
||||
;; fold Ξ-compose over map Δ-constructor-method-telescope over the list of constructors
|
||||
(define-metafunction tt-ctxtL
|
||||
method-loop : Δ x t (x ...) -> Ξ
|
||||
[(method-loop Δ x_D t_P ()) hole]
|
||||
[(method-loop Δ x_D t_P (x_0 x_rest ...))
|
||||
(Ξ-compose (Δ-constructor-method-telescope Δ x_D x_0 t_P) (method-loop Δ x_D t_P (x_rest ...)))])
|
||||
|
||||
;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-methods-telescope : Δ x t -> Ξ
|
||||
[(Δ-methods-telescope Δ x_D t_P)
|
||||
(method-loop Δ x_D t_P (Δ-ref-constructors Δ x_D))])
|
||||
|
||||
;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result
|
||||
;; is in universe U.
|
||||
;;
|
||||
|
@ -368,29 +343,40 @@
|
|||
;; Ξ_P*D is the telescope of the parameters of x_D and
|
||||
;; the witness of type x_D (applied to the parameters)
|
||||
;; Ξ_m is the telescope of the methods for x_D
|
||||
|
||||
;; Returns the inductive hypotheses required for the elimination method of constructor c_i for
|
||||
;; inductive type D, when eliminating with motive t_P.
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-elim-type : Δ x U -> t
|
||||
[(Δ-elim-type Δ x_D U)
|
||||
(Π (x_P : (in-hole Ξ_P*D U))
|
||||
;; The methods Ξ_m for each constructor of type x_D
|
||||
(in-hole Ξ_m
|
||||
;; And finally, the parameters and discriminant
|
||||
(in-hole Ξ_P*D
|
||||
;; The result is (P a ... (x_D a ...)), i.e., the motive
|
||||
;; applied to the paramters and discriminant
|
||||
(Ξ-apply Ξ_P*D x_P))))
|
||||
;; Get the parameters of x_D
|
||||
(where Ξ (Δ-ref-parameter-Ξ Δ x_D))
|
||||
Δ-constructor-inductive-hypotheses : Δ D c t -> Ξ
|
||||
[(Δ-constructor-inductive-hypotheses Δ D c_i t_P)
|
||||
(hypotheses-loop D t_P (Δ-constructor-inductive-telescope Δ D c_i))])
|
||||
|
||||
;; Returns the type of the method corresponding to c_i
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-constructor-method-type : Δ D c t -> t
|
||||
[(Δ-constructor-method-type Δ D c_i t_P)
|
||||
(in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a c_i))))
|
||||
(where Θ_p (Δ-constructor-parameters Δ D c_i))
|
||||
(where Ξ_a (Δ-constructor-telescope Δ D c_i))
|
||||
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ D c_i t_P))])
|
||||
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-method-types : Δ D e -> (t ...)
|
||||
[(Δ-method-types Δ D e)
|
||||
,(map (lambda (c) (term (Δ-constructor-method-type Δ D ,c e))) (term (c ...)))
|
||||
(where (c ...) (Δ-ref-constructors Δ D))])
|
||||
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-motive-type : Δ D U -> t
|
||||
[(Δ-motive-type Δ D U)
|
||||
(in-hole Ξ_P*D U)
|
||||
(where Ξ (Δ-ref-parameter-Ξ Δ D))
|
||||
;; A fresh name to bind the discriminant
|
||||
(where x ,(variable-not-in (term (Δ Γ x_D Ξ)) 'x-D))
|
||||
(where x ,(variable-not-in (term (Δ D Ξ)) 'x-D))
|
||||
;; The telescope (∀ a -> ... -> (D a ...) hole), i.e.,
|
||||
;; of the parameters and the inductive type applied to the
|
||||
;; parameters
|
||||
(where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ x_D)) hole)))
|
||||
;; A fresh name for the motive
|
||||
(where x_P ,(variable-not-in (term (Δ Γ x_D Ξ Ξ_P*D x)) 'x-P))
|
||||
;; The types of the methods for this inductive.
|
||||
(where Ξ_m (Δ-methods-telescope Δ x_D x_P))])
|
||||
;; of the indices and the inductive type applied to the
|
||||
;; indices
|
||||
(where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ D)) hole)))])
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Dynamic semantics
|
||||
|
@ -398,16 +384,21 @@
|
|||
;;; inductively defined type x with a motive whose result is in universe U
|
||||
|
||||
(define-extended-language tt-redL tt-ctxtL
|
||||
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However,
|
||||
;; determining whether or not it is partially applied cannot be done with the grammar alone.
|
||||
(v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U)))
|
||||
(Θv ::= hole (Θv v))
|
||||
;; call-by-value, plus reduce under Π (helps with typing checking)
|
||||
(E ::= hole (E e) (v E) (Π (x : v) E) (Π (x : E) e)))
|
||||
(v ::= x U (Π (x : t) t) (λ (x : t) t) (in-hole Θv c))
|
||||
(Θv ::= hole (Θv v))
|
||||
(C-elim ::= (elim D t_P (e_i ...) (e_m ...) hole))
|
||||
;; call-by-value
|
||||
(E ::= hole (E e) (v E)
|
||||
(elim D e (e ...) (v ... E e ...) e)
|
||||
(elim D e (e ...) (v ...) E)
|
||||
;; reduce under Π (helps with typing checking)
|
||||
;; TODO: Should be done in conversion judgment
|
||||
(Π (x : v) E) (Π (x : E) e)))
|
||||
|
||||
(define Θv? (redex-match? tt-redL Θv))
|
||||
(define E? (redex-match? tt-redL E))
|
||||
(define v? (redex-match? tt-redL v))
|
||||
|
||||
#|
|
||||
| The elim form must appear applied like so:
|
||||
| (elim D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
|
||||
|
@ -423,75 +414,6 @@
|
|||
|
|
||||
| Using contexts, this appears as (in-hole Θ ((elim D U) v_P))
|
||||
|#
|
||||
|
||||
|
||||
;;; NB: Next 3 meta-function Assume of Θ n constructors, j parameters, n+j+1-th element is discriminant
|
||||
|
||||
;; Given the apply context Θ in which an elimination of D with motive
|
||||
;; v of type U appears, extract the parameters p ... from Θ.
|
||||
(define-metafunction tt-redL
|
||||
elim-parameters : Δ D Θ -> Θ
|
||||
[(elim-parameters Δ D Θ)
|
||||
;; Drop the methods, take the parameters
|
||||
(list->Θ
|
||||
,(take
|
||||
(drop (term (Θ->list Θ)) (term (Δ-constructor-count Δ D)))
|
||||
(term (Δ-parameter-count Δ D))))])
|
||||
|
||||
;; Given the apply context Θ in which an elimination of D with motive
|
||||
;; v of type U appears, extract the methods m_0 ... m_n from Θ.
|
||||
(define-metafunction tt-redL
|
||||
elim-methods : Δ D Θ -> Θ
|
||||
[(elim-methods Δ D Θ)
|
||||
;; Take the methods, one for each constructor
|
||||
(list->Θ
|
||||
,(take
|
||||
(term (Θ->list Θ))
|
||||
(term (Δ-constructor-count Δ D))))])
|
||||
|
||||
;; Given the apply context Θ in which an elimination of D with motive
|
||||
;; v of type U appears, extract the discriminant (c_i a ...) from Θ.
|
||||
(define-metafunction tt-redL
|
||||
elim-discriminant : Δ D Θ -> e
|
||||
[(elim-discriminant Δ D Θ)
|
||||
;; Drop the methods, the parameters, and take the last element
|
||||
,(car
|
||||
(drop
|
||||
(drop (term (Θ->list Θ)) (term (Δ-constructor-count Δ D)))
|
||||
(term (Δ-parameter-count Δ D))))])
|
||||
|
||||
;; Check that Θ is valid and ready to be evaluated as the arguments to an elim.
|
||||
;; has length m = n + j + 1 and D has n constructors and j parameters,
|
||||
;; and the 1 represents the discriminant.
|
||||
;; discharges assumption for previous 3 meta-functions
|
||||
(define-metafunction tt-redL
|
||||
Θ-valid : Δ D Θ -> #t or #f
|
||||
[(Θ-valid Δ D Θ)
|
||||
#t
|
||||
(where natural_m (Θ-length Θ))
|
||||
(where natural_n (Δ-constructor-count Δ D))
|
||||
(where natural_j (Δ-parameter-count Δ D))
|
||||
(side-condition (= (+ (term natural_n) (term natural_j) 1) (term natural_m)))
|
||||
;; As Cur allows reducing (through reflection) open terms,
|
||||
;; check that the discriminant is a canonical form so that
|
||||
;; reduction can proceed; otherwise not valid.
|
||||
(where (in-hole Θ_i c_i) (elim-discriminant Δ D Θ))
|
||||
(where D (Δ-key-by-constructor Δ c_i))]
|
||||
[(Θ-valid Δ D Θ) #f])
|
||||
|
||||
(module+ test
|
||||
(require rackunit)
|
||||
(check-equal?
|
||||
(term (Θ-length (((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)))
|
||||
3)
|
||||
(check-true
|
||||
(term
|
||||
(Θ-valid
|
||||
((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat))))) (bool : (Unv 0) ((true : bool) (false : bool))))
|
||||
nat
|
||||
(((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)))))
|
||||
|
||||
|
||||
(define-metafunction tt-ctxtL
|
||||
is-inductive-argument : Δ D t -> #t or #f
|
||||
;; Think this only works in call-by-value. A better solution would
|
||||
|
@ -505,39 +427,35 @@
|
|||
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
|
||||
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
|
||||
;; TODO TTEESSSSSTTTTTTTT
|
||||
(define-metafunction tt-ctxtL
|
||||
Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ
|
||||
(define-metafunction tt-redL
|
||||
Δ-inductive-elim : Δ D C-elim Θ -> Θ
|
||||
;; NB: If metafunction fails, recursive
|
||||
;; NB: elimination will be wrong. This will introduced extremely sublte bugs,
|
||||
;; NB: inconsistency, failure of type safety, and other bad things.
|
||||
;; NB: It should be tested and audited thoroughly
|
||||
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (Θ_i t_i))
|
||||
((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)
|
||||
(in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P)))
|
||||
(side-condition (term (is-inductive-argument Δ x_D t_i)))]
|
||||
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (Θ_i t_i))
|
||||
(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)]
|
||||
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m hole)
|
||||
hole])
|
||||
[(Δ-inductive-elim any ... hole)
|
||||
hole]
|
||||
[(Δ-inductive-elim Δ D C-elim (Θ_c t_i))
|
||||
((Δ-inductive-elim Δ D C-elim Θ_c)
|
||||
(in-hole C-elim t_i))
|
||||
(side-condition (term (is-inductive-argument Δ D t_i)))]
|
||||
[(Δ-inductive-elim any ... (Θ_c t_i))
|
||||
(Δ-inductive-elim any ... Θ_c)])
|
||||
|
||||
(define tt-->
|
||||
(reduction-relation tt-redL
|
||||
(--> (Δ (in-hole E ((λ (x : t_0) t_1) t_2)))
|
||||
(Δ (in-hole E (subst t_1 x t_2)))
|
||||
-->β)
|
||||
(--> (Δ (in-hole E (in-hole Θv ((elim D U) v_P))))
|
||||
(Δ (in-hole E (in-hole Θ_r (in-hole Θv_i v_mi))))
|
||||
;; Check that Θv is valid to avoid capturing other things
|
||||
(side-condition (term (Θ-valid Δ D Θv)))
|
||||
;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and
|
||||
;; the discriminant: the constructor c_i applied to its argument Θv_i
|
||||
(where Θv_p (elim-parameters Δ D Θv))
|
||||
(where Θv_m (elim-methods Δ D Θv))
|
||||
(where (in-hole Θv_i c_i) (elim-discriminant Δ D Θv))
|
||||
;; Find the method for constructor x_ci, relying on the order of the arguments.
|
||||
(where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ D c_i)))
|
||||
(--> (Δ (in-hole E (elim D e_motive (e_i ...) (v_m ...) (in-hole Θv_c c))))
|
||||
(Δ (in-hole E (in-hole Θ_mi v_mi)))
|
||||
;; Find the method for constructor c_i, relying on the order of the arguments.
|
||||
(where natural (Δ-constructor-index Δ D c))
|
||||
(where v_mi ,(list-ref (term (v_m ...)) (term natural)))
|
||||
;; Generate the inductive recursion
|
||||
(where Θ_r (Δ-inductive-elim Δ D U v_P Θv_p Θv_m Θv_i))
|
||||
#;(Δ-inductive-elim Δ D U v_P Θv_p Θv_m Θv_i)
|
||||
(where Θ_ih (Δ-inductive-elim Δ D (elim D e_motive (e_i ...) (v_m ...) hole) Θv_c))
|
||||
(where Θ_mi (in-hole Θ_ih Θv_c))
|
||||
-->elim)))
|
||||
|
||||
(define-metafunction tt-redL
|
||||
|
@ -698,10 +616,16 @@
|
|||
----------------- "DTR-Application"
|
||||
(type-infer Δ Γ (e_0 e_1) t_3)]
|
||||
|
||||
[(where t (Δ-elim-type Δ D U))
|
||||
(type-infer Δ Γ t U_e)
|
||||
[(type-check Δ Γ e_c (apply D e_i ...))
|
||||
|
||||
(type-infer Δ Γ e_motive (name t_motive (in-hole Ξ U)))
|
||||
(convert Δ Γ t_motive (Δ-motive-type Δ D U))
|
||||
|
||||
(where (t_m ...) (Δ-method-types Δ D e_motive))
|
||||
(type-check Δ Γ e_m t_m) ...
|
||||
----------------- "DTR-Elim_D"
|
||||
(type-infer Δ Γ (elim D U) t)])
|
||||
(type-infer Δ Γ (elim D e_motive (e_i ...) (e_m ...) e_c)
|
||||
(apply e_motive e_i ... e_c))])
|
||||
|
||||
(define-judgment-form tt-typingL
|
||||
#:mode (type-check I I I I)
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
;; This module just provide module language sugar over the redex model.
|
||||
|
||||
(require
|
||||
"redex-core.rkt"
|
||||
(except-in "redex-core.rkt" apply)
|
||||
redex/reduction-semantics
|
||||
racket/provide-syntax
|
||||
(for-syntax
|
||||
|
@ -11,7 +11,7 @@
|
|||
racket/syntax
|
||||
(except-in racket/provide-transform export)
|
||||
racket/require-transform
|
||||
"redex-core.rkt"
|
||||
(except-in "redex-core.rkt" apply)
|
||||
redex/reduction-semantics))
|
||||
(provide
|
||||
;; Basic syntax
|
||||
|
@ -177,10 +177,11 @@
|
|||
[e (parameterize ([gamma (extend-Γ/term gamma x t)])
|
||||
(cur->datum #'e))])
|
||||
(term (,(syntax->datum #'b) (,x : ,t) ,e)))]
|
||||
[(elim t1 t2)
|
||||
(let* ([t1 (cur->datum #'t1)]
|
||||
[t2 (cur->datum #'t2)])
|
||||
(term (elim ,t1 ,t2)))]
|
||||
[(elim D motive (i ...) (m ...) d)
|
||||
(term (elim ,(cur->datum #'D) ,(cur->datum #'motive)
|
||||
,(map cur->datum (syntax->list #'(i ...)))
|
||||
,(map cur->datum (syntax->list #'(m ...)))
|
||||
,(cur->datum #'d)))]
|
||||
[(#%app e1 e2)
|
||||
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
|
||||
(unless (or (inner-expand?) (type-infer/term reified-term))
|
||||
|
@ -446,9 +447,9 @@
|
|||
|
||||
(define-syntax (dep-elim syn)
|
||||
(syntax-parse syn
|
||||
[(_ D:id T)
|
||||
[(_ D:id motive (i ...) (m ...) e)
|
||||
(syntax->curnel-syntax
|
||||
(quasisyntax/loc syn (elim D T)))]))
|
||||
(quasisyntax/loc syn (elim D motive (i ...) (m ...) e)))]))
|
||||
|
||||
(define-syntax-rule (dep-void) (void))
|
||||
|
||||
|
|
|
@ -95,8 +95,18 @@
|
|||
(cur->coq #'t))]))))
|
||||
"")]
|
||||
[(Type i) "Type"]
|
||||
[(real-elim var t)
|
||||
(format "~a_rect" (cur->coq #'var))]
|
||||
[(real-elim var:id motive (i ...) (m ...) d)
|
||||
(format
|
||||
"(~a_rect ~a~a~a ~a)"
|
||||
(cur->coq #'var)
|
||||
(cur->coq #'motive)
|
||||
(for/fold ([strs ""])
|
||||
([m (syntax->list #'(m ...))])
|
||||
(format "~a ~a" strs (cur->coq m)))
|
||||
(for/fold ([strs ""])
|
||||
([i (syntax->list #'(i ...))])
|
||||
(format "~a ~a" strs (cur->coq i)))
|
||||
(cur->coq #'d))]
|
||||
[(real-app e1 e2)
|
||||
(format "(~a ~a)" (cur->coq #'e1) (cur->coq #'e2))]
|
||||
[e:id (sanitize-id (format "~a" (syntax->datum #'e)))])))
|
||||
|
|
|
@ -71,11 +71,12 @@
|
|||
(define proof:A-or-A
|
||||
(lambda (A : Type) (c : (Or A A))
|
||||
;; TODO: What should the motive be?
|
||||
(elim Or Type (lambda (A : Type) (B : Type) (c : (Or A B)) A)
|
||||
(lambda (A : Type) (B : Type) (a : A) a)
|
||||
;; TODO: How do we know B is A?
|
||||
(lambda (A : Type) (B : Type) (b : B) b)
|
||||
A A c)))
|
||||
(elim Or (lambda (A : Type) (B : Type) (c : (Or A B)) A)
|
||||
(A A)
|
||||
((lambda (A : Type) (B : Type) (a : A) a)
|
||||
;; TODO: How do we know B is A?
|
||||
(lambda (A : Type) (B : Type) (b : B) b))
|
||||
c)))
|
||||
|
||||
(qed thm:A-or-A proof:A-or-A)
|
||||
|#
|
||||
|
|
|
@ -12,7 +12,6 @@
|
|||
#%app
|
||||
define
|
||||
:
|
||||
elim
|
||||
define-type
|
||||
match
|
||||
recur
|
||||
|
@ -29,7 +28,6 @@
|
|||
|
||||
(require
|
||||
(only-in "../main.rkt"
|
||||
[elim real-elim]
|
||||
[#%app real-app]
|
||||
[λ real-lambda]
|
||||
[Π real-Π]
|
||||
|
@ -163,8 +161,67 @@
|
|||
(quasisyntax/loc syn
|
||||
(real-define id body))]))
|
||||
|
||||
(define-syntax-rule (elim t1 t2 e ...)
|
||||
((real-elim t1 t2) e ...))
|
||||
#|
|
||||
(begin-for-syntax
|
||||
(define (type->telescope syn)
|
||||
(syntax-parse (cur-expand syn)
|
||||
#:literals (real-Π)
|
||||
#:datum-literals (:)
|
||||
[(real-Π (x:id : t) body)
|
||||
(cons #'(x : t) (type->telescope #'body))]
|
||||
[_ '()]))
|
||||
|
||||
(define (type->body syn)
|
||||
(syntax-parse syn
|
||||
#:literals (real-Π)
|
||||
#:datum-literals (:)
|
||||
[(real-Π (x:id : t) body)
|
||||
(type->body #'body)]
|
||||
[e #'e]))
|
||||
|
||||
(define (constructor-indices D syn)
|
||||
(let loop ([syn syn]
|
||||
[args '()])
|
||||
(syntax-parse (cur-expand syn)
|
||||
#:literals (real-app)
|
||||
[D:id args]
|
||||
[(real-app e1 e2)
|
||||
(loop #'e1 (cons #'e2 args))])))
|
||||
|
||||
(define (inductive-index-telescope D)
|
||||
(type->telescope (cur-type-infer D)))
|
||||
|
||||
(define (inductive-method-telescope D motive)
|
||||
(for/list ([syn (cur-constructor-map D)])
|
||||
(with-syntax ([(c : t) syn]
|
||||
[name (gensym (format-symbol "~a-~a" #'c 'method))]
|
||||
[((arg : arg-type) ...) (type->telescope #'t)]
|
||||
[((rarg : rarg-type) ...) (constructor-recursive-args D #'((arg : arg-type) ...))]
|
||||
[((ih : ih-type) ...) (constructor-inductive-hypotheses #'((rarg : rarg-type) ...) motive)]
|
||||
[(iarg ...) (constructor-indices D (type->body #'t))]
|
||||
)
|
||||
#`(name : (forall (arg : arg-type) ...
|
||||
(ih : ih-type) ...
|
||||
(motive iarg ...)))))))
|
||||
|
||||
(define-syntax (elim syn)
|
||||
(syntax-parse syn
|
||||
[(elim D:id U e ...)
|
||||
(with-syntax ([((x : t) ...) (inductive-index-telescope #'D)]
|
||||
[motive (gensym 'motive)]
|
||||
[y (gensym 'y)]
|
||||
[disc (gensym 'disc)]
|
||||
[((method : method-type) ...) (inductive-method-telescope #'D #'motive)])
|
||||
#`((lambda
|
||||
(motive : (forall (x : t) ... (y : (D x ...)) U))
|
||||
(method : ) ...
|
||||
(x : t) ...
|
||||
(disc : (D x ...)) ...
|
||||
(real-elim D motive (x ...) (method ...) disc))
|
||||
e ...)
|
||||
)
|
||||
]))
|
||||
|#
|
||||
|
||||
;; Quite fragie to give a syntactic treatment of pattern matching -> eliminator. Replace with "Elimination with a Motive"
|
||||
(begin-for-syntax
|
||||
|
@ -366,15 +423,9 @@
|
|||
(quasisyntax/loc syn
|
||||
(elim
|
||||
D.inductive-name
|
||||
#,(or
|
||||
(cur-type-infer (attribute return-type))
|
||||
(raise-syntax-error
|
||||
'match
|
||||
"Could not infer type of motive. Sorry, you'll have to use elim."
|
||||
syn))
|
||||
motive
|
||||
c.method ...
|
||||
#,@(attribute D.indices)
|
||||
#,(attribute D.indices)
|
||||
(c.method ...)
|
||||
d))]))
|
||||
|
||||
(begin-for-syntax
|
||||
|
|
|
@ -3,5 +3,5 @@
|
|||
(define deps '("base" ("redex-lib" #:version "1.11")))
|
||||
(define build-deps '())
|
||||
(define pkg-desc "implementation (no documentation, tests) part of \"cur\".")
|
||||
(define version "0.3")
|
||||
(define version "0.4")
|
||||
(define pkg-authors '(wilbowma))
|
||||
|
|
|
@ -41,11 +41,12 @@
|
|||
"\\| T-Bla : \\(forall g : gamma, \\(forall e : term, \\(forall t : type, \\(\\(\\(meow g\\) e\\) t\\)\\)\\)\\)\\."
|
||||
(second (string-split t "\n"))))
|
||||
(let ([t (cur->coq
|
||||
#'(elim nat Type (lambda (x : nat) nat) z
|
||||
(lambda (x : nat) (ih-x : nat) ih-x)
|
||||
#'(elim nat (lambda (x : nat) nat)
|
||||
()
|
||||
(z (lambda (x : nat) (ih-x : nat) ih-x))
|
||||
e))])
|
||||
(check-regexp-match
|
||||
"\\(\\(\\(\\(nat_rect \\(fun x : nat => nat\\)\\) z\\) \\(fun x : nat => \\(fun ih_x : nat => ih_x\\)\\)\\) e\\)"
|
||||
"\\(nat_rect \\(fun x : nat => nat\\) z \\(fun x : nat => \\(fun ih_x : nat => ih_x\\)\\) e\\)"
|
||||
t))
|
||||
(check-regexp-match
|
||||
"Definition thm_plus_commutes := \\(forall n : nat, \\(forall m : nat, \\(\\(\\(== nat\\) \\(\\(plus n\\) m\\)\\) \\(\\(plus m\\) n\\)\\)\\)\\).\n"
|
||||
|
|
|
@ -121,35 +121,10 @@
|
|||
(Π (z : t_2) (Π (a : t_3) hole))))
|
||||
(term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole))))))
|
||||
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
|
||||
(term (Π (m-zero : ((λ (x : nat) nat) zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat P))
|
||||
(term (Π (m-zero : (P zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
|
||||
hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
|
||||
(term (Π (m-zero : ((λ (x : nat) nat) zero))
|
||||
(Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x)))))
|
||||
hole))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))))
|
||||
(term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
|
||||
((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
|
||||
A)
|
||||
B)
|
||||
((((conj A) B) a) b)))))))
|
||||
hole)))
|
||||
(check-true (x? (term false)))
|
||||
(check-true (Ξ? (term hole)))
|
||||
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
|
||||
(check-true (redex-match? ttL ((x : t) ...) (term ())))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))
|
||||
(term hole))
|
||||
|
||||
;; Tests for inductive elimination
|
||||
;; ------------------------------------------------------------------------
|
||||
|
@ -157,21 +132,32 @@
|
|||
(check-true
|
||||
(redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(term (Δ-inductive-elim ,Δ nat
|
||||
(elim nat (λ (x : nat) nat) ()
|
||||
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
hole)
|
||||
(hole zero)))
|
||||
(term (hole (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero))))
|
||||
(term (hole (elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
|
||||
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(term (Δ-inductive-elim ,Δ nat
|
||||
(elim nat (λ (x : nat) nat) ()
|
||||
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
hole)
|
||||
(hole (s zero))))
|
||||
(term (hole (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(s zero)))))
|
||||
(term (hole (elim nat (λ (x : nat) nat) ()
|
||||
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(s zero)))))
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-inductive-elim ,Δ nat
|
||||
(elim nat (λ (x : nat) nat) ()
|
||||
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
hole)
|
||||
hole))
|
||||
(term hole))
|
||||
|
||||
;; Tests for dynamic semantics
|
||||
;; ------------------------------------------------------------------------
|
||||
|
@ -179,6 +165,8 @@
|
|||
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
|
||||
(check-true (v? (term (refl Nat))))
|
||||
(check-true (v? (term ((refl Nat) z))))
|
||||
(check-true (v? (term zero)))
|
||||
(check-true (v? (term (s zero))))
|
||||
|
||||
;; TODO: Move equivalence up here, and use in these tests.
|
||||
(check-equiv? (term (reduce ∅ (Unv 0))) (term (Unv 0)))
|
||||
|
@ -188,60 +176,68 @@
|
|||
(term (Π (x : t) (Unv 0))))
|
||||
(check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
|
||||
(term (Π (x : t) (x x))))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
(s (s x)))))
|
||||
zero)))
|
||||
|
||||
(check-equal? (term (Δ-constructor-index ,Δ nat zero)) 0)
|
||||
(check-equiv? (term (reduce ,Δ (elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero)))
|
||||
(term (s zero)))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat)
|
||||
(s (s x)))))
|
||||
(s zero))))
|
||||
(check-equiv? (term (reduce ,Δ (elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(s zero))))
|
||||
(term (s (s zero))))
|
||||
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(check-equiv? (term (reduce ,Δ (elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
(s (s (s zero))))))
|
||||
(term (s (s (s (s zero))))))
|
||||
|
||||
(check-equiv?
|
||||
(term (reduce ,Δ
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s (s zero)))))
|
||||
(elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s (s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s (s zero)))))
|
||||
(term (s (s (s (s zero))))))
|
||||
(check-equiv?
|
||||
(term (step ,Δ
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s (s zero)))))
|
||||
(elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s (s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s (s zero)))))
|
||||
(term
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
(s zero))
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s zero)))))
|
||||
(elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s (s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s zero)))))
|
||||
(check-equiv?
|
||||
(term (step ,Δ (step ,Δ
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
(s zero))
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s zero))))))
|
||||
(elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s (s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
(s zero))))))
|
||||
(term
|
||||
((λ (ih-x1 : nat) (s ih-x1))
|
||||
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
|
||||
zero)
|
||||
(((((elim nat Type) (λ (x : nat) nat))
|
||||
(s (s zero)))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
zero)))))
|
||||
(elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s (s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
|
||||
zero)))))
|
||||
|
||||
(define-syntax-rule (check-equivalent e1 e2)
|
||||
(check-holds (convert ∅ ∅ e1 e2)))
|
||||
|
@ -343,28 +339,42 @@
|
|||
U))
|
||||
;; ---- Elim
|
||||
;; TODO: Clean up/Reorganize these tests
|
||||
(check-true
|
||||
(redex-match? tt-typingL
|
||||
(in-hole Θ_m (((elim x_D U) e_D) e_P))
|
||||
(term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
|
||||
(define Δtruth (term (∅ (truth : (Unv 0) ((T : truth))))))
|
||||
(check-holds (type-infer ,Δtruth ∅ truth (in-hole Ξ U)))
|
||||
(check-holds (type-infer ,Δtruth ∅ T (in-hole Θ_ai truth)))
|
||||
(check-holds (type-infer ,Δtruth ∅ (λ (x : truth) (Unv 1))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
|
||||
|
||||
(check-telescope-equiv?
|
||||
(term (Δ-methods-telescope ,Δtruth truth (λ (x : truth) (Unv 1))))
|
||||
(term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole)))
|
||||
(check-holds (type-infer ,Δtruth ∅ (elim truth Type) t))
|
||||
(check-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||
(check-equiv?
|
||||
(term (Δ-motive-type ,Δtruth truth (Unv 2)))
|
||||
(term (Π (x : truth) (Unv 2))))
|
||||
|
||||
|
||||
(check-holds (type-check ,Δtruth ∅ (Unv 0) ,(car (term (Δ-method-types ,Δtruth truth (λ (x : truth) (Unv 1)))))))
|
||||
|
||||
(check-holds (type-check ,Δtruth ∅ (λ (x : truth) (Unv 1)) (Π (x : truth) (Unv 2))))
|
||||
|
||||
(check-equiv?
|
||||
(term (apply (λ (x : truth) (Unv 1)) T))
|
||||
(term ((λ (x : truth) (Unv 1)) T)))
|
||||
|
||||
(check-holds
|
||||
(convert ,Δtruth ∅ (apply (λ (x : truth) (Unv 1)) T) (Unv 1)))
|
||||
|
||||
(check-holds (type-infer ,Δtruth
|
||||
∅
|
||||
((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0))
|
||||
T)
|
||||
(elim truth (λ (x : truth) (Unv 1))
|
||||
() ((Unv 0)) T)
|
||||
t))
|
||||
|
||||
(check-holds (type-check ,Δtruth
|
||||
∅
|
||||
(elim truth (λ (x : truth) (Unv 1))
|
||||
() ((Unv 0)) T)
|
||||
(Unv 1)))
|
||||
(check-not-holds (type-check (∅ (truth : (Unv 0) ((T : truth))))
|
||||
∅
|
||||
((((elim truth (Unv 1)) Type) Type) T)
|
||||
(elim truth Type () (Type) T)
|
||||
(Unv 1)))
|
||||
(check-holds
|
||||
(type-infer ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0)) U))
|
||||
|
@ -382,47 +392,54 @@
|
|||
(check-holds (type-check ,Δ syn ...)))
|
||||
(nat-test ∅ (Π (x : nat) nat) (Unv 0))
|
||||
(nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat))
|
||||
(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x))) zero)
|
||||
(nat-test ∅ (elim nat (λ (x : nat) nat) ()
|
||||
(zero (λ (x : nat) (λ (ih-x : nat) x)))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test ∅ nat (Unv 0))
|
||||
(nat-test ∅ zero nat)
|
||||
(nat-test ∅ s (Π (x : nat) nat))
|
||||
(nat-test ∅ (s zero) nat)
|
||||
;; TODO: Meta-function auto-currying and such
|
||||
(check-holds
|
||||
(type-infer ,Δ ∅ ((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
(type-infer ,Δ ∅ (λ (x : nat)
|
||||
(elim nat (λ (x : nat) nat)
|
||||
()
|
||||
(zero
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
x))
|
||||
t))
|
||||
(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
zero)
|
||||
(λ (x : nat) (λ (ih-x : nat) x)))
|
||||
zero)
|
||||
(nat-test ∅ (elim nat (λ (x : nat) nat)
|
||||
()
|
||||
(zero (λ (x : nat) (λ (ih-x : nat) x)))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero)
|
||||
(nat-test ∅ (elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test ∅ (((((elim nat Type) (λ (x : nat) nat))
|
||||
(s zero))
|
||||
(λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)
|
||||
(nat-test ∅ (elim nat (λ (x : nat) nat)
|
||||
()
|
||||
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
|
||||
zero)
|
||||
nat)
|
||||
(nat-test (∅ n : nat)
|
||||
(((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n)
|
||||
(elim nat (λ (x : nat) nat)
|
||||
()
|
||||
(zero (λ (x : nat) (λ (ih-x : nat) x)))
|
||||
n)
|
||||
nat)
|
||||
(check-holds
|
||||
(type-check (,Δ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
|
||||
(∅ n2 : nat)
|
||||
(((((elim nat (Unv 0)) (λ (x : nat) bool))
|
||||
btrue)
|
||||
(λ (x : nat) (λ (ih-x : bool) bfalse)))
|
||||
n2)
|
||||
(elim nat (λ (x : nat) bool)
|
||||
()
|
||||
(btrue (λ (x : nat) (λ (ih-x : bool) bfalse)))
|
||||
n2)
|
||||
bool))
|
||||
(check-not-holds
|
||||
(type-check ,Δ ∅
|
||||
((((elim nat (Unv 0)) nat) (s zero)) zero)
|
||||
(elim nat nat () ((s zero)) zero)
|
||||
nat))
|
||||
(define lam (term (λ (nat : (Unv 0)) nat)))
|
||||
(check-equivalent
|
||||
|
@ -481,15 +498,15 @@
|
|||
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
|
||||
(check-holds
|
||||
(type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((((elim and (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
true))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) tt)))))
|
||||
true) true)
|
||||
((((conj true) true) tt) tt))
|
||||
(elim and
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
true)))
|
||||
(true true)
|
||||
((λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) tt)))))
|
||||
((((conj true) true) tt) tt))
|
||||
true))
|
||||
(check-true (Γ? (term (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
|
||||
(check-holds
|
||||
|
@ -518,14 +535,15 @@
|
|||
(check-holds
|
||||
(type-check ,Δ4
|
||||
(((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
|
||||
((((((elim and (Unv 0))
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
P) Q) ab)
|
||||
(elim and
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A))))
|
||||
(P Q)
|
||||
((λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
ab)
|
||||
((and Q) P)))
|
||||
(check-holds
|
||||
(type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
|
@ -538,14 +556,14 @@
|
|||
t))
|
||||
(check-holds
|
||||
(type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅
|
||||
((((((elim and (Unv 0))
|
||||
(elim and
|
||||
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
|
||||
((and B) A)))))
|
||||
(λ (A : (Unv 0))
|
||||
((and B) A))))
|
||||
(true true)
|
||||
((λ (A : (Unv 0))
|
||||
(λ (B : (Unv 0))
|
||||
(λ (a : A)
|
||||
(λ (b : B) ((((conj B) A) b) a))))))
|
||||
true) true)
|
||||
((((conj true) true) tt) tt))
|
||||
((and true) true)))
|
||||
(define gamma (term (∅ temp863 : pre)))
|
||||
|
@ -568,21 +586,18 @@
|
|||
(check-holds
|
||||
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
|
||||
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
|
||||
(check-true
|
||||
(redex-match? tt-typingL
|
||||
((in-hole Θ_m ((elim x_D U) e_P)) e_D)
|
||||
(term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x)))
|
||||
x))))
|
||||
|
||||
(check-holds
|
||||
(type-check ,sigma (,gamma x : false)
|
||||
(((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
|
||||
(elim false (λ (y : false) (Π (x : Type) x)) () () x)
|
||||
(Π (x : (Unv 0)) x)))
|
||||
|
||||
;; nat-equal? tests
|
||||
(define zero?
|
||||
(term ((((elim nat Type) (λ (x : nat) bool))
|
||||
true)
|
||||
(λ (x : nat) (λ (x_ih : bool) false)))))
|
||||
(term (λ (n : nat)
|
||||
(elim nat (λ (x : nat) bool) ()
|
||||
(true (λ (x : nat) (λ (x_ih : bool) false)))
|
||||
n))))
|
||||
(check-holds
|
||||
(type-check ,Δ ∅ ,zero? (Π (x : nat) bool)))
|
||||
(check-equal?
|
||||
|
@ -592,9 +607,12 @@
|
|||
(term (reduce ,Δ (,zero? (s zero))))
|
||||
(term false))
|
||||
(define ih-equal?
|
||||
(term ((((elim nat Type) (λ (x : nat) bool))
|
||||
false)
|
||||
(λ (x : nat) (λ (y : bool) (x_ih x))))))
|
||||
(term (λ (ih : nat)
|
||||
(elim nat (λ (x : nat) bool)
|
||||
()
|
||||
(false
|
||||
(λ (x : nat) (λ (y : bool) (x_ih x))))
|
||||
ih))))
|
||||
(check-holds
|
||||
(type-check ,Δ (∅ x_ih : (Π (x : nat) bool))
|
||||
,ih-equal?
|
||||
|
@ -606,10 +624,13 @@
|
|||
(check-holds
|
||||
(type-infer ,Δ ∅ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0))))
|
||||
(define nat-equal?
|
||||
(term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool)))
|
||||
,zero?)
|
||||
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
|
||||
,ih-equal?)))))
|
||||
(term (λ (n : nat)
|
||||
(elim nat (λ (x : nat) (Π (x : nat) bool))
|
||||
()
|
||||
(,zero?
|
||||
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
|
||||
,ih-equal?)))
|
||||
n))))
|
||||
(check-holds
|
||||
(type-check ,Δ (∅ nat-equal? : (Π (x-D«4158» : nat) ((λ (x«4159» : nat) (Π (x«4160» : nat) bool)) x-D«4158»)))
|
||||
((nat-equal? zero) zero)
|
||||
|
@ -631,19 +652,12 @@
|
|||
(check-true (Δ? Δ=))
|
||||
|
||||
(define refl-elim
|
||||
(term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
|
||||
A1)
|
||||
x1)
|
||||
y1))
|
||||
nat)))))
|
||||
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))
|
||||
(term (elim == (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((== A1) x1) y1)) nat))))
|
||||
(bool true true)
|
||||
((λ (A1 : (Unv 0)) (λ (x1 : A1) zero)))
|
||||
((refl bool) true))))
|
||||
(check-holds
|
||||
(type-check ,Δ= ∅ ,refl-elim nat))
|
||||
(check-true
|
||||
(redex-match?
|
||||
tt-redL
|
||||
(Δ (in-hole E (in-hole Θ ((elim x_D U) e_P))))
|
||||
(term (,Δ= ,refl-elim))))
|
||||
(check-true
|
||||
(redex-match?
|
||||
tt-redL
|
||||
|
|
|
@ -32,11 +32,11 @@
|
|||
(:: (lambda (A : Type) (n : Nat) (none A)) (forall (A : Type) (-> Nat (Maybe A)))))
|
||||
(check-equal?
|
||||
(void)
|
||||
(:: (elim List Type (lambda (A : Type) (ls : (List A)) Nat)
|
||||
(lambda (A : Type) z)
|
||||
(lambda (A : Type) (a : A) (ls : (List A)) (ih : Nat)
|
||||
z)
|
||||
Bool
|
||||
(:: (elim List (lambda (A : Type) (ls : (List A)) Nat)
|
||||
(Bool)
|
||||
((lambda (A : Type) z)
|
||||
(lambda (A : Type) (a : A) (ls : (List A)) (ih : Nat)
|
||||
z))
|
||||
(nil Bool))
|
||||
Nat))
|
||||
|
||||
|
|
|
@ -11,11 +11,11 @@
|
|||
(:: pf:proj1 thm:proj1)
|
||||
(:: pf:proj2 thm:proj2)
|
||||
(check-equal?
|
||||
(elim == Type (λ (A : Type) (x : A) (y : A) (p : (== A x y)) Nat)
|
||||
(λ (A : Type) (x : A) z)
|
||||
Bool
|
||||
true
|
||||
true
|
||||
(elim == (λ (A : Type) (x : A) (y : A) (p : (== A x y)) Nat)
|
||||
(Bool
|
||||
true
|
||||
true)
|
||||
((λ (A : Type) (x : A) z))
|
||||
(refl Bool true))
|
||||
z)
|
||||
|
||||
|
|
|
@ -11,9 +11,7 @@
|
|||
(equal? : (forall (a : A) (b : A) Bool)))
|
||||
(impl (Eqv Bool)
|
||||
(define (equal? (a : Bool) (b : Bool))
|
||||
(if a
|
||||
(if b true false)
|
||||
(if b false true))))
|
||||
(if a b (not b))))
|
||||
(impl (Eqv Nat)
|
||||
(define equal? nat-equal?))
|
||||
(check-equal?
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
#lang info
|
||||
(define collection 'multi)
|
||||
(define deps '())
|
||||
(define build-deps '("base" "rackunit-lib" ("cur-lib" #:version "0.2") "sweet-exp"))
|
||||
(define build-deps '("base" "rackunit-lib" ("cur-lib" #:version "0.4") "sweet-exp"))
|
||||
(define update-implies '("cur-lib"))
|
||||
(define pkg-desc "Tests for \"cur\".")
|
||||
(define pkg-authors '(wilbowma))
|
||||
|
|
Loading…
Reference in New Issue
Block a user