@ -35,14 +35,11 @@
( i ::= natural )
( U ::= ( Unv i ) )
( x ::= variable-not-otherwise-mentioned )
( v ::= ( Π ( x : t ) t ) ( λ ( x : t ) t ) elim x U capp )
( capp ::= ( x v ) ( capp v ) )
( t e ::= v ( t t ) ) )
( t e ::= ( Π ( x : t ) t ) ( λ ( x : t ) t ) ( elim t t ) x U ( t t ) ) )
( define x? ( redex-match? cicL x ) )
( define t? ( redex-match? cicL t ) )
( define e? ( redex-match? cicL e ) )
( define v? ( redex-match? cicL v ) )
( define U? ( redex-match? cicL U ) )
( module+ test
@ -61,14 +58,8 @@
( check-true ( U? ( term ( Unv 0 ) ) ) )
( check-true ( U? ( term Type ) ) )
( check-true ( e? ( term ( λ ( x_0 : ( Unv 0 ) ) x_0 ) ) ) )
( check-true ( v? ( term ( λ ( x_0 : ( Unv 0 ) ) x_0 ) ) ) )
( check-true ( t? ( term ( λ ( x_0 : ( Unv 0 ) ) x_0 ) ) ) )
( check-true ( t? ( term ( λ ( x_0 : ( Unv 0 ) ) x_0 ) ) ) )
( check-true
( v? ( term ( refl Nat ) ) ) )
( check-true
( v? ( term ( ( refl Nat ) z ) ) ) )
)
( check-true ( t? ( term ( λ ( x_0 : ( Unv 0 ) ) x_0 ) ) ) ) )
;; 'A'
;; Types of Universes
@ -104,10 +95,10 @@
#:contract ( α -equivalent t t )
[ ----------------- " α -x"
( α -equivalent x x ) ]
( α -equivalent x x ) ]
[ ----------------- " α -U"
( α -equivalent U U ) ]
( α -equivalent U U ) ]
[ ( α -equivalent t_1 ( subst t_3 x_1 x_0 ) )
( α -equivalent t_0 t_2 )
@ -125,8 +116,8 @@
( check-holds ( α -equivalent ( λ ( x : A ) x ) ( λ ( y : A ) y ) ) ) )
( define-metafunction cicL
fresh-x : any ... -> x
[ ( fresh-x any ... ) , ( variable-not-in ( term ( any ... ) ) ( term x ) ) ] )
fresh-x : any ... -> x
[ ( fresh-x any ... ) , ( variable-not-in ( term ( any ... ) ) ( term x ) ) ] )
;; NB: Substitution is hard
;; NB: Copy and pasted from Redex examples
@ -156,7 +147,7 @@
( term ( x_0 t_0 x t t_1 ) )
( term x_0 ) ) ) ]
[ ( subst ( e_0 e_1 ) x t ) ( ( subst e_0 x t ) ( subst e_1 x t ) ) ]
[ ( subst elim x t ) elim ] )
[ ( subst ( elim e_0 e_1 ) x t ) ( elim ( subst e_0 x t ) ( subst e_1 x t ) ) ] )
( module+ test
( check-true ( t? ( term ( Π ( a : A ) ( Π ( b : B ) ( ( and A ) B ) ) ) ) ) )
( check-holds
@ -175,23 +166,32 @@
;; TODO: I think a lot of things can be simplified if I rethink how
;; TODO: model contexts, telescopes, and such.
( define-extended-language cic-redL cicL
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim.
;; TODO: Perhaps (elim x U) should step to an eta-expanded version of elim
( v ::= x U ( Π ( x : t ) t ) ( λ ( x : t ) t ) ( elim x U ) ( in-hole Θv x ) ( in-hole Θv ( elim x U ) ) )
;; call-by-value, plus reduce under Π (helps with typing checking)
( E ::= hole ( v E ) ( E e )
( Π ( x : ( in-hole Θ x ) ) E )
( E ::= hole ( E e ) ( v E )
( Π ( x : v ) E )
( Π ( x : E ) e ) )
;; TODO: Σ should probably be moved to cicL, since elim is there.
;; Σ (signature). (inductive-name : type ((constructor : type) ...))
( Σ ::= ∅ ( Σ ( x : t ( ( x : t ) ... ) ) ) )
( Ξ Φ ::= hole ( Π ( x : t ) Ξ ) ) ;;(Telescope)
;; NB: Does an apply context correspond to a substitution (γ )?
( Θ ::= hole ( Θ e ) ) ) ;;(Apply context)
( Θ ::= hole ( Θ e ) ) ;;(Apply context)
( Θv ::= hole ( Θv v ) ) )
( define Σ? ( redex-match? cic-redL Σ ) )
( define Ξ? ( redex-match? cic-redL Ξ ) )
( define Φ? ( redex-match? cic-redL Φ ) )
( define Θ? ( redex-match? cic-redL Θ ) )
( define Θv? ( redex-match? cic-redL Θv ) )
( define E? ( redex-match? cic-redL E ) )
( define v? ( redex-match? cic-redL v ) )
( module+ test
( check-true ( v? ( term ( λ ( x_0 : ( Unv 0 ) ) x_0 ) ) ) )
( check-true ( v? ( term ( refl Nat ) ) ) )
( check-true ( v? ( term ( ( refl Nat ) z ) ) ) )
;; TODO: Rename these signatures, and use them in all future tests.
( define Σ ( term ( ( ∅ ( nat : ( Unv 0 ) ( ( zero : nat ) ( s : ( Π ( x : nat ) nat ) ) ) ) )
( bool : ( Unv 0 ) ( ( true : bool ) ( false : bool ) ) ) ) ) )
@ -231,7 +231,6 @@
( ( append-Σ Σ_2 Σ_1 ) ( x : t ( ( x_c : t_c ) ... ) ) ) ] )
;; TODO: Test
;; TODO: Isn't this just plug?
;; TODO: Maybe this should be called "apply-to-telescope"
( define-metafunction cic-redL
apply-telescope : t Ξ -> t
@ -274,7 +273,7 @@
( in-hole Θ_i ( hole ( in-hole Θ_r x_ci ) ) )
( x_c0 ... x_ci x_c1 ... ) )
( ( elim-recur x_D U e_P Θ Θ_m Θ_i ( x_c0 ... x_ci x_c1 ... ) )
( in-hole ( Θ ( in-hole Θ_r x_ci ) ) ( ( ( elim x_D ) U ) e_P ) ) ) ]
( in-hole ( Θ ( in-hole Θ_r x_ci ) ) ( ( elim x_D U ) e_P ) ) ) ]
[ ( elim-recur x_D U e_P Θ Θ_i Θ_nr ( x ... ) ) hole ] )
( module+ test
( check-true
@ -285,7 +284,7 @@
( ( hole ( s zero ) ) ( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ( s x ) ) ) ) )
( hole zero )
( zero s ) ) )
( term ( hole ( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( term ( hole ( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s zero ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ( s x ) ) ) ) )
zero ) ) ) )
@ -295,7 +294,7 @@
( ( hole ( s zero ) ) ( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ( s x ) ) ) ) )
( hole ( s zero ) )
( zero s ) ) )
( term ( hole ( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( term ( hole ( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s zero ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ( s x ) ) ) ) )
( s zero ) ) ) ) ) )
@ -327,16 +326,16 @@
( --> ( Σ ( in-hole E ( ( any ( x : t_0 ) t_1 ) t_2 ) ) )
( Σ ( in-hole E ( subst t_1 x t_2 ) ) )
-->β )
( --> ( Σ ( in-hole E ( in-hole Θ ( ( ( elim x_D ) U ) e _P) ) ) )
( Σ ( in-hole E ( in-hole Θ_r ( in-hole Θ _i e _mi) ) ) )
( --> ( Σ ( in-hole E ( in-hole Θ v ( ( elim x_D U ) v _P) ) ) )
( Σ ( in-hole E ( in-hole Θ_r ( in-hole Θ v_i v _mi) ) ) )
#|
| The elim form must appear applied like so:
| ( elim x_D U e _P m_0 ... m_i m_j ... m_n p ... ( c_i a ... ) )
| ( elim x_D U v _P m_0 ... m_i m_j ... m_n p ... ( c_i a ... ) )
|
| Where:
| x_D is the inductive being eliminated
| U is the universe of the result of the motive
| e _P is the motive
| v _P is the motive
| m_ { 0..n } are the methods
| p ... are the parameters of x_D
| c_i is a constructor of x_d
@ -344,11 +343,11 @@
| Unfortunately , Θ contexts turn all this inside out:
| TODO: Write better abstractions for this notation
| #
( where ( in-hole ( Θ _p ( in-hole Θ _i x_ci ) ) Θ _m)
Θ )
( where ( in-hole ( Θ v _p ( in-hole Θ v _i x_ci ) ) Θ v _m)
Θ v )
;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other
;; arguments.
( judgment-holds ( telescope-match Θ _p ( parameters-of Σ x_D ) ) )
( judgment-holds ( telescope-match Θ v _p ( parameters-of Σ x_D ) ) )
;; Ensure x_ci is actually a constructor for x_D
( where ( ( x_c* : t_c* ) ... )
( constructors-for Σ x_D ) )
@ -356,11 +355,11 @@
( x_c* ... ) )
;; There should be a number of methods equal to the number of constructors; to ensure E
;; doesn't capture methods and Θ_m doesn't capture other arguments
( judgment-holds ( length-match Θ _m ( x_c* ... ) ) )
( judgment-holds ( length-match Θ v _m ( x_c* ... ) ) )
;; Find the method for constructor x_ci, relying on the order of the arguments.
( where e _mi ( method-lookup Σ x_D x_ci Θ _m) )
( where v _mi ( method-lookup Σ x_D x_ci Θ v _m) )
;; Generate the inductive recursion
( where Θ_r ( elim-recur x_D U e_P ( in-hole Θ_p Θ_m ) Θ_m Θ _i ( x_c* ... ) ) )
( where Θ_r ( elim-recur x_D U v_P ( in-hole Θv_p Θv_m ) Θv_m Θv _i ( x_c* ... ) ) )
-->elim ) ) )
( define-metafunction cic-redL
@ -373,7 +372,8 @@
reduce : Σ e -> e
[ ( reduce Σ e )
e_r
( where ( _ e_r ) , ( let ( [ r ( apply-reduction-relation* cic--> ( term ( Σ e ) ) ) ] )
( where ( _ e_r ) , ( let ( [ r ( apply-reduction-relation* cic--> ( term ( Σ e ) )
#:cache-all? #t ) ] )
( unless ( null? ( cdr r ) )
( error " Church-rosser broken " r ) )
( car r ) ) ) ] )
@ -386,19 +386,19 @@
( term ( Π ( x : t ) ( Unv 0 ) ) ) )
( check-equal? ( term ( reduce ∅ ( Π ( x : t ) ( ( Π ( x_0 : t ) ( x_0 x ) ) x ) ) ) )
( term ( Π ( x : t ) ( x x ) ) ) )
( check-equal? ( term ( reduce , Σ ( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( check-equal? ( term ( reduce , Σ ( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s zero ) )
( λ ( x : nat ) ( λ ( ih-x : nat )
( s ( s x ) ) ) ) )
zero ) ) )
( term ( s zero ) ) )
( check-equal? ( term ( reduce , Σ ( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( check-equal? ( term ( reduce , Σ ( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s zero ) )
( λ ( x : nat ) ( λ ( ih-x : nat )
( s ( s x ) ) ) ) )
( s zero ) ) ) )
( term ( s ( s zero ) ) ) )
( check-equal? ( term ( reduce , Σ ( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( check-equal? ( term ( reduce , Σ ( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s zero ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ( s x ) ) ) ) )
( s ( s ( s zero ) ) ) ) ) )
@ -406,21 +406,21 @@
( check-equal?
( term ( reduce , Σ
( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s ( s zero ) ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ih-x ) ) ) )
( s ( s zero ) ) ) ) )
( term ( s ( s ( s ( s zero ) ) ) ) ) )
( check-equal?
( term ( step , Σ
( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s ( s zero ) ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ih-x ) ) ) )
( s ( s zero ) ) ) ) )
( term
( ( ( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ih-x ) ) )
( s zero ) )
( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s ( s zero ) ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ih-x ) ) ) )
( s zero ) ) ) ) )
@ -428,7 +428,7 @@
( term ( step , Σ ( step , Σ
( ( ( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ih-x ) ) )
( s zero ) )
( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s ( s zero ) ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ih-x ) ) ) )
( s zero ) ) ) ) ) )
@ -437,7 +437,7 @@
( ( λ ( ih-x1 : nat ) ( s ih-x1 ) )
( ( ( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ih-x ) ) )
zero )
( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s ( s zero ) ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ih-x ) ) ) )
zero ) ) ) ) ) )
@ -804,8 +804,8 @@
;; The types of the methods for this inductive.
( where Ξ_m ( methods-for x_D x_P ( constructors-for Σ x_D ) ) )
----------------- " DTR-Elim_D "
( type-infer Σ Γ ( ( elim x_D ) U )
;; The type of ( ( elim x_D) U) is something like:
( type-infer Σ Γ ( elim x_D U )
;; The type of ( elim x_D U) is something like:
;; (∀ (P : (∀ a -> ... -> (D a ...) -> U))
;; (method_ci ...) -> ... ->
;; (a -> ... -> (D a ...) ->
@ -858,8 +858,8 @@
;; TODO: Clean up/Reorganize these tests
( check-true
( redex-match? cic-typingL
( in-hole Θ_m ( ( ( ( elim x_D ) U ) e_D ) e_P ) )
( term ( ( ( ( ( elim truth ) Type ) T ) ( Π ( x : truth ) ( Unv 1 ) ) ) ( Unv 0 ) ) ) ) )
( in-hole Θ_m ( ( ( elim x_D U ) e_D ) e_P ) )
( term ( ( ( ( elim truth Type ) T ) ( Π ( x : truth ) ( Unv 1 ) ) ) ( Unv 0 ) ) ) ) )
( define Σtruth ( term ( ∅ ( truth : ( Unv 0 ) ( ( T : truth ) ) ) ) ) )
( check-holds ( type-infer , Σtruth ∅ truth ( in-hole Ξ U ) ) )
( check-holds ( type-infer , Σtruth ∅ T ( in-hole Θ_ai truth ) ) )
@ -872,15 +872,15 @@
( methods-for truth
( λ ( x : truth ) ( Unv 1 ) )
( ( T : truth ) ) ) ) )
( check-holds ( type-infer , Σtruth ∅ ( ( elim truth ) Type ) t ) )
( check-holds ( type-infer , Σtruth ∅ ( elim truth Type ) t ) )
( check-holds ( type-check ( ∅ ( truth : ( Unv 0 ) ( ( T : truth ) ) ) )
∅
( ( ( ( ( elim truth ) ( Unv 2 ) ) ( λ ( x : truth ) ( Unv 1 ) ) ) ( Unv 0 ) )
( ( ( ( elim truth ( Unv 2 ) ) ( λ ( x : truth ) ( Unv 1 ) ) ) ( Unv 0 ) )
T )
( Unv 1 ) ) )
( check-not-holds ( type-check ( ∅ ( truth : ( Unv 0 ) ( ( T : truth ) ) ) )
∅
( ( ( ( ( elim truth ) ( Unv 1 ) ) Type ) Type ) T )
( ( ( ( elim truth ( Unv 1 ) ) Type ) Type ) T )
( Unv 1 ) ) )
( check-holds
( type-infer ∅ ∅ ( Π ( x2 : ( Unv 0 ) ) ( Unv 0 ) ) U ) )
@ -898,7 +898,7 @@
( check-holds ( type-check , Σ syn ... ) ) )
( nat-test ∅ ( Π ( x : nat ) nat ) ( Unv 0 ) )
( nat-test ∅ ( λ ( x : nat ) x ) ( Π ( x : nat ) nat ) )
( nat-test ∅ ( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) ) zero )
( nat-test ∅ ( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) ) zero )
( λ ( x : nat ) ( λ ( ih-x : nat ) x ) ) ) zero )
nat )
( nat-test ∅ nat ( Unv 0 ) )
@ -907,38 +907,38 @@
( nat-test ∅ ( s zero ) nat )
;; TODO: Meta-function auto-currying and such
( check-holds
( type-infer , Σ ∅ ( ( ( ( ( elim nat ) ( Unv 0 ) ) ( λ ( x : nat ) nat ) )
( type-infer , Σ ∅ ( ( ( ( elim nat ( Unv 0 ) ) ( λ ( x : nat ) nat ) )
zero )
( λ ( x : nat ) ( λ ( ih-x : nat ) x ) ) )
t ) )
( nat-test ∅ ( ( ( ( ( ( elim nat ) ( Unv 0 ) ) ( λ ( x : nat ) nat ) )
( nat-test ∅ ( ( ( ( ( elim nat ( Unv 0 ) ) ( λ ( x : nat ) nat ) )
zero )
( λ ( x : nat ) ( λ ( ih-x : nat ) x ) ) )
zero )
nat )
( nat-test ∅ ( ( ( ( ( ( elim nat ) ( Unv 0 ) ) ( λ ( x : nat ) nat ) )
( nat-test ∅ ( ( ( ( ( elim nat ( Unv 0 ) ) ( λ ( x : nat ) nat ) )
( s zero ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ( s x ) ) ) ) )
zero )
nat )
( nat-test ∅ ( ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) nat ) )
( nat-test ∅ ( ( ( ( ( elim nat Type ) ( λ ( x : nat ) nat ) )
( s zero ) )
( λ ( x : nat ) ( λ ( ih-x : nat ) ( s ( s x ) ) ) ) ) zero )
nat )
( nat-test ( ∅ n : nat )
( ( ( ( ( ( elim nat ) ( Unv 0 ) ) ( λ ( x : nat ) nat ) ) zero ) ( λ ( x : nat ) ( λ ( ih-x : nat ) x ) ) ) n )
( ( ( ( ( elim nat ( Unv 0 ) ) ( λ ( x : nat ) nat ) ) zero ) ( λ ( x : nat ) ( λ ( ih-x : nat ) x ) ) ) n )
nat )
( check-holds
( type-check ( , Σ ( bool : ( Unv 0 ) ( ( btrue : bool ) ( bfalse : bool ) ) ) )
( ∅ n2 : nat )
( ( ( ( ( ( elim nat ) ( Unv 0 ) ) ( λ ( x : nat ) bool ) )
( ( ( ( ( elim nat ( Unv 0 ) ) ( λ ( x : nat ) bool ) )
btrue )
( λ ( x : nat ) ( λ ( ih-x : bool ) bfalse ) ) )
n2 )
bool ) )
( check-not-holds
( type-check , Σ ∅
( ( ( ( ( elim nat ) ( Unv 0 ) ) nat ) ( s zero ) ) zero )
( ( ( ( elim nat ( Unv 0 ) ) nat ) ( s zero ) ) zero )
nat ) )
( define lam ( term ( λ ( nat : ( Unv 0 ) ) nat ) ) )
( check-equal?
@ -997,7 +997,7 @@
( in-hole Ξ ( Π ( x : ( in-hole Θ_Ξ and ) ) U_P ) ) ) )
( check-holds
( type-check ( , Σ4 ( true : ( Unv 0 ) ( ( tt : true ) ) ) ) ∅
( ( ( ( ( ( ( elim and ) ( Unv 0 ) )
( ( ( ( ( ( elim and ( Unv 0 ) )
( λ ( A : Type ) ( λ ( B : Type ) ( λ ( x : ( ( and A ) B ) )
true ) ) ) )
( λ ( A : ( Unv 0 ) )
@ -1034,7 +1034,7 @@
( check-holds
( type-check , Σ4
( ( ( ∅ P : ( Unv 0 ) ) Q : ( Unv 0 ) ) ab : ( ( and P ) Q ) )
( ( ( ( ( ( ( elim and ) ( Unv 0 ) )
( ( ( ( ( ( elim and ( Unv 0 ) )
( λ ( A : Type ) ( λ ( B : Type ) ( λ ( x : ( ( and A ) B ) )
( ( and B ) A ) ) ) ) )
( λ ( A : ( Unv 0 ) )
@ -1054,7 +1054,7 @@
t ) )
( check-holds
( type-check ( , Σ4 ( true : ( Unv 0 ) ( ( tt : true ) ) ) ) ∅
( ( ( ( ( ( ( elim and ) ( Unv 0 ) )
( ( ( ( ( ( elim and ( Unv 0 ) )
( λ ( A : Type ) ( λ ( B : Type ) ( λ ( x : ( ( and A ) B ) )
( ( and B ) A ) ) ) ) )
( λ ( A : ( Unv 0 ) )
@ -1086,17 +1086,17 @@
( in-hole Ξ ( Π ( x : ( in-hole Θ false ) ) U ) ) ) )
( check-true
( redex-match? cic-typingL
( ( in-hole Θ_m ( ( ( elim x_D ) U ) e_P ) ) e_D )
( term ( ( ( ( elim false ) ( Unv 1 ) ) ( λ ( y : false ) ( Π ( x : Type ) x ) ) )
( ( in-hole Θ_m ( ( elim x_D U ) e_P ) ) e_D )
( term ( ( ( elim false ( Unv 1 ) ) ( λ ( y : false ) ( Π ( x : Type ) x ) ) )
x ) ) ) )
( check-holds
( type-check , sigma ( , gamma x : false )
( ( ( ( elim false ) ( Unv 0 ) ) ( λ ( y : false ) ( Π ( x : Type ) x ) ) ) x )
( ( ( elim false ( Unv 0 ) ) ( λ ( y : false ) ( Π ( x : Type ) x ) ) ) x )
( Π ( x : ( Unv 0 ) ) x ) ) )
;; nat-equal? tests
( define zero?
( term ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) bool ) )
( term ( ( ( ( elim nat Type ) ( λ ( x : nat ) bool ) )
true )
( λ ( x : nat ) ( λ ( x_ih : bool ) false ) ) ) ) )
( check-holds
@ -1108,7 +1108,7 @@
( term ( reduce , Σ ( , zero? ( s zero ) ) ) )
( term false ) )
( define ih-equal?
( term ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) bool ) )
( term ( ( ( ( elim nat Type ) ( λ ( x : nat ) bool ) )
false )
( λ ( x : nat ) ( λ ( y : bool ) ( x_ih x ) ) ) ) ) )
( check-holds
@ -1122,7 +1122,7 @@
( check-holds
( type-infer , Σ ∅ ( λ ( x : nat ) ( Π ( x : nat ) bool ) ) ( Π ( x : nat ) ( Unv 0 ) ) ) )
( define nat-equal?
( term ( ( ( ( ( elim nat ) Type ) ( λ ( x : nat ) ( Π ( x : nat ) bool ) ) )
( term ( ( ( ( elim nat Type ) ( λ ( x : nat ) ( Π ( x : nat ) bool ) ) )
, zero? )
( λ ( x : nat ) ( λ ( x_ih : ( Π ( x : nat ) bool ) )
, ih-equal? ) ) ) ) )
@ -1143,7 +1143,7 @@
( check-true ( Σ? Σ= ) )
( define refl-elim
( term ( ( ( ( ( ( ( ( elim == ) ( Unv 0 ) ) ( λ ( A1 : ( Unv 0 ) ) ( λ ( x1 : A1 ) ( λ ( y1 : A1 ) ( λ ( p2 : ( ( ( ==
( term ( ( ( ( ( ( ( elim == ( Unv 0 ) ) ( λ ( A1 : ( Unv 0 ) ) ( λ ( x1 : A1 ) ( λ ( y1 : A1 ) ( λ ( p2 : ( ( ( ==
A1 )
x1 )
y1 ) )
@ -1154,7 +1154,7 @@
( check-true
( redex-match?
cic-redL
( Σ ( in-hole E ( in-hole Θ ( ( ( elim x_D ) U ) e_P ) ) ) )
( Σ ( in-hole E ( in-hole Θ ( ( elim x_D U ) e_P ) ) ) )
( term ( , Σ= , refl-elim ) ) ) )
( check-true
( redex-match?