Compare commits
2 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
bfb5edf0a3 | ||
![]() |
6e581ed8d8 |
|
@ -2,6 +2,7 @@
|
|||
|
||||
(require
|
||||
racket/function
|
||||
racket/list
|
||||
redex/reduction-semantics)
|
||||
|
||||
(provide
|
||||
|
@ -1248,3 +1249,179 @@
|
|||
(check-equal?
|
||||
(term (reduce ,Σ= ,refl-elim))
|
||||
(term zero)))
|
||||
|
||||
;;; ------------------------------------------------------------------------
|
||||
;;; Finding an ill-typed subterm.
|
||||
|
||||
#| NB TODO:
|
||||
| Copypasta of type-infer, type-check from redex-core
|
||||
|
|
||||
| Takes advantage of judgment-form depth-first semantics to identify the failing subterm using
|
||||
| the last clause of (build-derivations). Might be better to build this into type-infer? Maybe not
|
||||
|#
|
||||
(define-judgment-form tt-typingL
|
||||
#:mode (ill-typed-infer I I I O)
|
||||
#:contract (ill-typed-infer Σ Γ e t)
|
||||
|
||||
[(unv-ok U_0 U_1)
|
||||
(wf Σ Γ)
|
||||
----------------- "DTR-Axiom"
|
||||
(ill-typed-infer Σ Γ U_0 U_1)]
|
||||
|
||||
[(where t (Σ-ref-type Σ x))
|
||||
----------------- "DTR-Inductive"
|
||||
(ill-typed-infer Σ Γ x t)]
|
||||
|
||||
[(where t (Γ-ref Γ x))
|
||||
----------------- "DTR-Start"
|
||||
(ill-typed-infer Σ Γ x t)]
|
||||
|
||||
[(ill-typed-infer Σ Γ t_0 U_1)
|
||||
(ill-typed-infer Σ (Γ x : t_0) t U_2)
|
||||
(unv-kind U_1 U_2 U)
|
||||
----------------- "DTR-Product"
|
||||
(ill-typed-infer Σ Γ (Π (x : t_0) t) U)]
|
||||
|
||||
[(ill-typed-infer Σ Γ e_0 (Π (x_0 : t_0) t_1))
|
||||
(ill-typed-check Σ Γ e_1 t_0)
|
||||
(where t_3 (reduce Σ ((Π (x_0 : t_0) t_1) e_1)))
|
||||
----------------- "DTR-Application"
|
||||
(ill-typed-infer Σ Γ (e_0 e_1) t_3)]
|
||||
|
||||
[(ill-typed-infer Σ (Γ x : t_0) e t_1)
|
||||
(ill-typed-infer Σ Γ (Π (x : t_0) t_1) U)
|
||||
----------------- "DTR-Abstraction"
|
||||
(ill-typed-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
|
||||
|
||||
[(where t (Σ-elim-type Σ x_D U))
|
||||
(ill-typed-infer Σ Γ t U_e)
|
||||
----------------- "DTR-Elim_D"
|
||||
(ill-typed-infer Σ Γ (elim x_D U) t)]
|
||||
|
||||
[(side-condition (not-typed-infer Σ Γ e))
|
||||
----------------- "DTR-Infer-Fail"
|
||||
(ill-typed-infer Σ Γ e (Unv 1001))])
|
||||
|
||||
(define-metafunction tt-typingL
|
||||
[(not-typed-infer Σ Γ e)
|
||||
,(not (judgment-holds (type-infer Σ Γ e t)))])
|
||||
|
||||
(define-judgment-form tt-typingL
|
||||
#:mode (ill-typed-check I I I I)
|
||||
#:contract (ill-typed-check Σ Γ e t)
|
||||
|
||||
[(ill-typed-infer Σ Γ e t_0)
|
||||
(equivalent Σ t_0 t)
|
||||
----------------- "DTR-Check"
|
||||
(ill-typed-check Σ Γ e t)]
|
||||
|
||||
[(ill-typed-infer Σ Γ e t_0)
|
||||
(side-condition ,(not (judgment-holds (equivalent Σ t_0 t))))
|
||||
(side-condition ,(not (equal? (term t_0) (term (Unv 1001)))))
|
||||
----------------- "DTR-Not-Equiv"
|
||||
(ill-typed-check Σ Γ e t)]
|
||||
|
||||
[(side-condition ,(not (judgment-holds (type-check Σ Γ e t))))
|
||||
----------------- "DTR-Check-Fail"
|
||||
(ill-typed-check Σ Γ e t)])
|
||||
|
||||
(define (dtr-check-fail? deriv)
|
||||
(equal? (derivation-name deriv) "DTR-Check-Fail"))
|
||||
|
||||
(define (dtr-not-equiv? deriv)
|
||||
(equal? (derivation-name deriv) "DTR-Not-Equiv"))
|
||||
|
||||
(define (dtr-infer-fail? deriv)
|
||||
(equal? (derivation-name deriv) "DTR-Infer-Fail"))
|
||||
|
||||
(define (dtr-fail? d)
|
||||
(or (dtr-infer-fail? d) (dtr-not-equiv? d) (dtr-check-fail? d)))
|
||||
|
||||
(define (dtr-non-fail? d)
|
||||
(not (dtr-fail? d)))
|
||||
|
||||
;; At top-level, if there are any non-failing derivations, remove all failing derivations
|
||||
;; TODO: Really need to do more pruning. Or maybe throw this out and try a more principled approach.
|
||||
(define (prefer-nonfailing fds)
|
||||
(if (findf dtr-non-fail? fds)
|
||||
(remf* dtr-fail? fds)
|
||||
fds))
|
||||
|
||||
;; Hide sigma/gamma; for debugging purposes
|
||||
(define (remove-sigma/gamma fds)
|
||||
(for/list ([fd fds])
|
||||
(struct-copy derivation fd
|
||||
[term (reverse (for/fold
|
||||
([t '()])
|
||||
([c (derivation-term fd)])
|
||||
(if (or (Γ? c) (Σ? c))
|
||||
t
|
||||
(cons c t))))]
|
||||
[subs (remove-sigma/gamma (derivation-subs fd))])))
|
||||
|
||||
(define clean-derivs (compose prefer-nonfailing))
|
||||
|
||||
(define (find-first-fail fds)
|
||||
(let ([fd (findf dtr-fail? fds)])
|
||||
(or fd
|
||||
(for/or ([fd fds])
|
||||
(find-first-fail (derivation-subs fd))))))
|
||||
|
||||
(define (derivation->errorf fd)
|
||||
(cond
|
||||
[(dtr-not-equiv? fd)
|
||||
(lambda a
|
||||
(apply raise-syntax-error
|
||||
'cur
|
||||
(format
|
||||
"Expected ~a but inferred ~a"
|
||||
(fifth (derivation-term fd))
|
||||
(fifth (derivation-term (last (derivation-subs fd)))))
|
||||
`(,(car a) ,(fourth (derivation-term (last (derivation-subs fd)))) ,@(cdr a))))]
|
||||
[(dtr-infer-fail? fd)
|
||||
(lambda a
|
||||
(apply raise-syntax-error
|
||||
'cur
|
||||
(format
|
||||
"Could not infer type for ~a"
|
||||
(fourth (derivation-term fd)))
|
||||
a))]
|
||||
[(dtr-check-fail? fd)
|
||||
(lambda a
|
||||
(apply raise-syntax-error
|
||||
'cur
|
||||
(format
|
||||
"Term ~a does not have expected type ~a, but could not deduce more than that"
|
||||
(fourth (derivation-term fd))
|
||||
(fifth (derivation-term fd)))
|
||||
a))]))
|
||||
|
||||
(require racket/pretty)
|
||||
(define (derivations->errorf fds)
|
||||
(derivation->errorf (find-first-fail (clean-derivs fds))))
|
||||
|
||||
;; Produces a function that can take any of the optional arguments to raise-syntax-error, and will
|
||||
;; raise a helpful type error message
|
||||
(define-syntax-rule (type-judgment-error (name args ...))
|
||||
;; NB HACK: This let binding appears to be necesary to speed up build-derivations
|
||||
(let ([_ (judgment-holds (name args ...))])
|
||||
(derivations->errorf (build-derivations (name args ...)))))
|
||||
|
||||
(module+ test
|
||||
(check-holds
|
||||
(ill-typed-check ,Σ ∅
|
||||
((((elim nat (Unv 0)) nat) (s zero)) zero)
|
||||
nat))
|
||||
((type-judgment-error
|
||||
(ill-typed-check ,Σ ∅
|
||||
((((elim nat (Unv 0)) nat) (s zero)) zero)
|
||||
nat))
|
||||
'((((elim nat (Unv 0)) nat) (s zero)) zero))
|
||||
(check-exn
|
||||
exn:fail:syntax?
|
||||
(thunk
|
||||
((type-judgment-error
|
||||
(ill-typed-check ,Σ ∅
|
||||
((((elim nat (Unv 0)) nat) (s zero)) zero)
|
||||
nat))
|
||||
'((((elim nat (Unv 0)) nat) (s zero)) zero)))))
|
||||
|
|
|
@ -151,9 +151,7 @@
|
|||
(define (cur->datum syn)
|
||||
;; Main loop; avoid type
|
||||
(define reified-term
|
||||
;; TODO: This results in less good error messages. Add an
|
||||
;; algorithm to find the smallest ill-typed term.
|
||||
(parameterize ([inner-expand? #f])
|
||||
(parameterize ([inner-expand? #t])
|
||||
(let cur->datum ([syn syn])
|
||||
(syntax-parse (core-expand syn)
|
||||
#:literals (term reduce #%app subst-all)
|
||||
|
@ -178,12 +176,11 @@
|
|||
(term (elim ,t1 ,t2)))]
|
||||
[(#%app e1 e2)
|
||||
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
|
||||
(unless (or inner-expand? (type-infer/term reified-term))
|
||||
;; TODO: is this really a syntax error?
|
||||
(raise-syntax-error 'cur "term is ill-typed:"
|
||||
(begin (printf "Sigma: ~s~nGamma: ~s~n" (sigma) (gamma))
|
||||
reified-term)
|
||||
syn))
|
||||
;; TODO: Expose type-judgment-error, or wrappers around it
|
||||
(unless (or (inner-expand?) (type-infer/term reified-term))
|
||||
((type-judgment-error
|
||||
(ill-typed-infer ,(sigma) ,(gamma) ,reified-term t_0))
|
||||
syn))
|
||||
reified-term)
|
||||
|
||||
(define (datum->cur syn t)
|
||||
|
|
Loading…
Reference in New Issue
Block a user