Compare commits

..

1 Commits

Author SHA1 Message Date
William J. Bowman
572b66aac4
Added axioms; added test, but it's *slow* 2016-01-22 15:28:11 -05:00
32 changed files with 655 additions and 650 deletions

View File

@ -45,10 +45,6 @@ Try it out: open up DrRacket and put the following in the definition area:
(if true
false
true)
(: + (-> Nat Nat Nat))
(define + plus)
(+ z (s z))
```
Try entering the following in the interaction area:
@ -56,23 +52,6 @@ Try entering the following in the interaction area:
(sub1 (s (s z)))
```
Don't like parenthesis? Use Cur with sweet-expressions:
```racket
#lang sweet-exp cur
require
cur/stdlib/sugar
cur/stdlib/bool
cur/stdlib/nat
if true
false
true
define + plus
{z + s(z)}
```
See the docs: `raco docs cur`.
Going further

View File

@ -17,7 +17,7 @@ Edwin C. Brady.
@(define curnel-eval (curnel-sandbox "(require cur/stdlib/nat cur/stdlib/bool cur/stdlib/prop)"))
@defform*[((Type n)
Type)]{
Type)]{
Define the universe of types at level @racket[n], where @racket[n] is any natural number.
@racket[Type] is a synonym for @racket[(Type 0)]. Cur is impredicative
in @racket[(Type 0)], although this is likely to change to a more
@ -33,44 +33,43 @@ restricted impredicative universe.
Type]
}
@defform[(λ (id : type-expr) body-expr)]{
Produces a single-arity procedure, binding the identifier @racket[id] of type
@racket[type-expr] in @racket[body-expr] and in the type of @racket[body-expr].
Both @racket[type-expr] and @racket[body-expr] can contain non-curnel forms,
such as macros.
@defform*[((lambda (id : type-expr) body-expr)
(λ (id : type-expr) body-expr))]{
Produces a single arity procedure, binding the identifier @racket[id] of type @racket[type-expr] in @racket[body-expr] and in the type of
@racket[body-expr].
Both @racket[type-expr] and @racket[body-expr] can contain non-curnel forms, such as macros.
Currently, Cur will return the underlying representation of a procedure when a
@racket[λ] is evaluated at the top-level.
Do not rely on this representation.
Currently, Cur will return the underlying representation of a procedure when a @racket[lambda] is
evaluated at the top-level. Do not rely on this representation.
@examples[#:eval curnel-eval
(λ (x : Type) x)]
(lambda (x : Type) x)]
@examples[#:eval curnel-eval
(λ (x : Type) (λ (y : x) y))]
(λ (x : Type) (lambda (y : x) y))]
@defform[(#%app procedure argument)]{
Applies the single-arity @racket[procedure] to @racket[argument].
Applies the single arity @racket[procedure] to @racket[argument].
}
@examples[#:eval curnel-eval
((λ (x : (Type 1)) x) Type)]
((lambda (x : (Type 1)) x) Type)]
@examples[#:eval curnel-eval
(#%app (λ (x : (Type 1)) x) Type)]
(#%app (lambda (x : (Type 1)) x) Type)]
}
@defform[(Π (id : type-expr) body-expr)]{
Produces a dependent function type, binding the identifier @racket[id] of type
@racket[type-expr] in @racket[body-expr].
@defform*[((forall (id : type-expr) body-expr)
(∀ (id : type-expr) body-expr))]{
Produces a dependent function type, binding the identifier @racket[id] of type @racket[type-expr] in @racket[body-expr].
@examples[#:eval curnel-eval
(Π (x : Type) Type)]
(forall (x : Type) Type)]
@examples[#:eval curnel-eval
(λ (x : (Π (x : (Type 1)) Type))
(lambda (x : (forall (x : (Type 1)) Type))
(x Type))]
}
@ -84,35 +83,32 @@ For instance, Cur does not currently perform strict positivity checking.
(data Bool : Type
(true : Bool)
(false : Bool))
((λ (x : Bool) x) true)
((lambda (x : Bool) x) true)
(data False : Type)
(data And : (Π (A : Type) (Π (B : Type) Type))
(conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) ((And A) B)))))))
(data And : (forall (A : Type) (forall (B : Type) Type))
(conj : (forall (A : Type) (forall (B : Type) (forall (a : A) (forall (b : B) ((And A) B)))))))
((((conj Bool) Bool) true) false)]
}
@defform[(elim inductive-type motive (index ...) (method ...) disc)]{
Fold over the term @racket[disc] of the inductively defined type @racket[inductive-type].
The @racket[motive] is a function that expects the indices of the inductive
type and a term of the inductive type and produces the type that this
fold returns.
The type of @racket[disc] is @racket[(inductive-type index ...)].
@racket[elim] takes one method for each constructor of @racket[inductive-type].
Each @racket[method] expects the arguments for its corresponding constructor,
and the inductive hypotheses generated by recursively eliminating all recursive
arguments of the constructor.
@defform[(elim type motive-universe)]{
Returns the inductive eliminator for @racket[type] where the @racket[motive-universe] is the universe
of the motive.
The eliminator expects the next argument to be the motive, the next @racket[N] arguments to be the methods for
each of the @racket[N] constructors of the inductive type @racket[type], the next @racket[P] arguments
to be the parameters @racket[p_0 ... p_P] of the inductive @racket[type], and the final argument to be the term to
eliminate of type @racket[(type p_0 ... p_P)].
The following example runs @racket[(sub1 (s z))].
@examples[#:eval curnel-eval
(data Nat : Type
(z : Nat)
(s : (Π (n : Nat) Nat)))
(elim Nat (λ (x : Nat) Nat)
()
(z
(λ (n : Nat) (λ (IH : Nat) n)))
(s z))]
(s : (forall (n : Nat) Nat)))
(((((elim Nat Type)
(lambda (x : Nat) Nat))
z)
(lambda (n : Nat) (lambda (IH : Nat) n)))
(s z))]
}
@defform[(define id expr)]{
@ -121,13 +117,11 @@ Binds @racket[id] to the result of @racket[expr].
@examples[#:eval curnel-eval
(data Nat : Type
(z : Nat)
(s : (Π (n : Nat) Nat)))
(define sub1 (λ (n : Nat)
(elim Nat (λ (x : Nat) Nat)
()
(z
(λ (n : Nat) (λ (IH : Nat) n)))
n)))
(s : (forall (n : Nat) Nat)))
(define sub1 (lambda (n : Nat)
(((((elim Nat Type) (lambda (x : Nat) Nat))
z)
(lambda (n : Nat) (lambda (IH : Nat) n))) n)))
(sub1 (s (s z)))
(sub1 (s z))
(sub1 z)]

View File

@ -25,61 +25,61 @@ phase 1 in Cur.}
@examples[
(eval:alts (define-syntax-rule (computed-type _) Type) (void))
(eval:alts (cur-expand #'(λ (x : (computed-type bla)) x))
(eval:result @racket[#'(λ (x : Type) x)] "" ""))
(eval:alts (cur-expand #'(lambda (x : (computed-type bla)) x))
(eval:result @racket[#'(lambda (x : Type) x)] "" ""))
]
}
@defproc[(cur-type-infer [syn syntax?])
@defproc[(type-infer/syn [syn syntax?])
(or/c syntax? #f)]{
Returns the type of the Cur term @racket[syn], or @racket[#f] if no type could be inferred.
@examples[
(eval:alts (cur-type-infer #'(λ (x : Type) x))
(eval:result @racket[#'(Π (x : (Type 0)) (Type 0))] "" ""))
(eval:alts (cur-type-infer #'Type)
(eval:alts (type-infer/syn #'(lambda (x : Type) x))
(eval:result @racket[#'(forall (x : (Type 0)) (Type 0))] "" ""))
(eval:alts (type-infer/syn #'Type)
(eval:result @racket[#'(Type 1)] "" ""))
]
}
@defproc[(cur-type-check? [syn syntax?])
@defproc[(type-check/syn? [syn syntax?])
boolean?]{
Returns @racket[#t] if the Cur term @racket[syn] is well-typed, or @racket[#f] otherwise.
@examples[
(eval:alts (cur-type-check? #'(λ (x : Type) x))
(eval:alts (type-check/syn? #'(lambda (x : Type) x))
(eval:result @racket[#t] "" ""))
(eval:alts (cur-type-check? #'Type)
(eval:alts (type-check/syn? #'Type)
(eval:result @racket[#t] "" ""))
(eval:alts (cur-type-check? #'x)
(eval:alts (type-check/syn? #'x)
(eval:result @racket[#f] "" ""))
]
}
@defproc[(cur-normalize [syn syntax?])
@defproc[(normalize/syn [syn syntax?])
syntax?]{
Runs the Cur term @racket[syn] to a value.
@examples[
(eval:alts (cur-normalize #'((λ (x : Type) x) Bool))
(eval:alts (normalize/syn #'((lambda (x : Type) x) Bool))
(eval:result @racket[#'Bool] "" ""))
(eval:alts (cur-normalize #'(sub1 (s (s z))))
(eval:alts (normalize/syn #'(sub1 (s (s z))))
(eval:result @racket[#'(s z)] "" ""))
]
}
@defproc[(cur-step [syn syntax?])
@defproc[(step/syn [syn syntax?])
syntax?]{
Runs the Cur term @racket[syn] for one step.
@examples[
(eval:alts (cur-step #'((λ (x : Type) x) Bool))
(eval:alts (step/syn #'((lambda (x : Type) x) Bool))
(eval:result @racket[#'Bool] "" ""))
(eval:alts (cur-step #'(sub1 (s (s z))))
(eval:result @racket[#'(elim Nat (λ (x2 : Nat) Nat)
()
(z (λ (x2 : Nat) (λ (ih-n2 : Nat) x2)))
(s (s z)))] "" ""))
(eval:alts (step/syn #'(sub1 (s (s z))))
(eval:result @racket[#'(((((elim Nat (Type 0))
(lambda (x2 : Nat) Nat)) z)
(lambda (x2 : Nat) (lambda (ih-n2 : Nat) x2)))
(s (s z)))] "" ""))
]
}
@ -90,11 +90,11 @@ equal modulo α and β-equivalence.
@examples[
(eval:alts (cur-equal? #'(λ (a : Type) a) #'(λ (b : Type) b))
(eval:alts (cur-equal? #'(lambda (a : Type) a) #'(lambda (b : Type) b))
(eval:result @racket[#t] "" ""))
(eval:alts (cur-equal? #'((λ (a : Type) a) Bool) #'Bool)
(eval:alts (cur-equal? #'((lambda (a : Type) a) Bool) #'Bool)
(eval:result @racket[#t] "" ""))
(eval:alts (cur-equal? #'(λ (a : Type) (sub1 (s z))) #'(λ (a : Type) z))
(eval:alts (cur-equal? #'(lambda (a : Type) (sub1 (s z))) #'(lambda (a : Type) z))
(eval:result @racket[#f] "" ""))
]
}
@ -106,7 +106,7 @@ Converts @racket[s] to a datum representation of the @tech{curnel form}, after e
@examples[
(eval:alts (cur->datum #'(λ (a : Type) a))
(eval:alts (cur-?datum #'(lambda (a : Type) a))
(eval:result @racket['(λ (a : (Unv 0) a))] "" ""))
]
}

View File

@ -7,10 +7,10 @@ Cur has a small standard library, primary for demonstration purposes.
@local-table-of-contents[]
@include-section{stdlib/tactics.scrbl}
@include-section{stdlib/sugar.scrbl}
@include-section{stdlib/bool.scrbl}
@include-section{stdlib/nat.scrbl}
@include-section{stdlib/maybe.scrbl}
@include-section{stdlib/list.scrbl}
@include-section{stdlib/typeclass.scrbl}
@include-section{stdlib/tactics.scrbl}

View File

@ -22,7 +22,7 @@ A syntactic form that expands to the inductive eliminator for @racket[Bool]. Thi
@examples[#:eval curnel-eval
(if true false true)
(elim Bool (λ (x : Bool) Bool) () (false true) true)]
(elim Bool Type (λ (x : Bool) Bool) false true true)]
}
@defproc[(not [x Bool])

View File

@ -21,15 +21,12 @@ This library defines various syntactic extensions making Cur easier to write tha
@defform*[((-> decl decl ... type)
(→ decl decl ... type)
(forall decl decl ... type)
(∀ decl decl ... type)
(Π decl decl ... type)
(Pi decl decl ... type))
(∀ decl decl ... type))
#:grammar
[(decl
type
(code:line (identifier : type)))]]{
A multi-artiy function type that supports dependent and non-dependent type declarations and automatic currying.
We provide lots of names for this form, because there are lots of synonyms in the literature.
@examples[#:eval curnel-eval
(data And : (-> Type Type Type)
@ -62,24 +59,21 @@ Defines multi-arity procedure application via automatic currying.
(conj Bool Bool true false)]
}
@defform[(: name type)]{
Declare that the @emph{function} which will be defined as @racket[name] has type @racket[type].
Must precede the definition of @racket[name].
@racket[type] must expand to a function type of the form @racket[(Π (x : t1) t2)]
When used, this form allows omitting the annotations on arguments in the definition @racket[name]
}
@defform*[((define name body)
(define (name x ...) body)
(define (name (x : t) ...) body))]{
(define (name (x : t) ...) body))]{
Like the @racket[define] provided by @racketmodname[cur], but supports
defining curried functions via @racket[lambda].
The second form, @racket[(define (name x ...) body)], can only be used when
a @racket[(: name type)] form appears earlier in the module.
}
@defform[(elim type motive-result-type e ...)]{
Like the @racket[elim] provided by @racketmodname[cur], but supports
automatically curries the remaining arguments @racket[e ...].
@examples[#:eval curnel-eval
(: id (forall (A : Type) (a : A) A))
(define (id A a) a)]
(elim Bool Type (lambda (x : Bool) Bool)
false
true
true)]
}
@defform*[((define-type name type)
@ -172,7 +166,7 @@ Check that expression @racket[e] has type @racket[type], causing a type-error if
}
@defform[(run syn)]{
Like @racket[cur-normalize], but is a syntactic form to be used in surface syntax.
Like @racket[normalize/syn], but is a syntactic form to be used in surface syntax.
Allows a Cur term to be written by computing part of the term from
another Cur term.
@ -182,7 +176,7 @@ another Cur term.
}
@defform[(step syn)]{
Like @racket[run], but uses @racket[cur-step] to evaluate only one step and prints intermediate
Like @racket[run], but uses @racket[step/syn] to evaluate only one step and prints intermediate
results before returning the result of evaluation.
@examples[#:eval curnel-eval

View File

@ -1,6 +1,6 @@
#lang info
(define collection 'multi)
(define deps '("base" "racket-doc"))
(define build-deps '("scribble-lib" ("cur-lib" #:version "0.4") "sandbox-lib"))
(define build-deps '("scribble-lib" ("cur-lib" #:version "0.2") "sandbox-lib"))
(define pkg-desc "Documentation for \"cur\".")
(define pkg-authors '(wilbowma))

View File

@ -26,11 +26,11 @@
(define-language ttL
(i j k ::= natural)
(U ::= (Unv i))
(D x c ::= variable-not-otherwise-mentioned)
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e) (elim D U))
;; Δ (signature). (inductive-name : type ((constructor : type) ...))
;; NB: Δ is a map from a name x to a pair of it's type and a map of constructor names to their types
(Δ ::= (Δ (D : t ((c : t) ...))))
(t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e)
;; (elim inductive-type motive (indices ...) (methods ...) discriminant)
(elim D e (e ...) (e ...) e))
(D x c ::= variable-not-otherwise-mentioned)
#:binding-forms
(λ (x : t) e #:refers-to x)
(Π (x : t_0) t_1 #:refers-to x))
@ -44,8 +44,6 @@
;;; ------------------------------------------------------------------------
;;; Universe typing
;; Universe types
;; aka Axioms A of a PTS
(define-judgment-form ttL
#:mode (unv-type I O)
#:contract (unv-type U U)
@ -55,7 +53,6 @@
(unv-type (Unv i_0) (Unv i_1))])
;; Universe predicativity rules. Impredicative in (Unv 0)
;; aka Rules R of a PTS
(define-judgment-form ttL
#:mode (unv-pred I I O)
#:contract (unv-pred U U U)
@ -108,6 +105,27 @@
[(Δ-union Δ_2 (Δ_1 (x : t any)))
((Δ-union Δ_2 Δ_1) (x : t any))])
;; Returns the inductively defined type that x constructs
;; NB: Depends on clause order
(define-metafunction ttL
Δ-key-by-constructor : Δ x -> x or #f
[(Δ-key-by-constructor (Δ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c)
x]
[(Δ-key-by-constructor (Δ (x_1 : t_1 any)) x)
(Δ-key-by-constructor Δ x)]
[(Δ-key-by-constructor Δ x)
#f])
;; Returns the constructor map for the inductively defined type x_D in the signature Δ
(define-metafunction ttL
Δ-ref-constructor-map : Δ x -> ((x : t) ...) or #f
;; NB: Depends on clause order
[(Δ-ref-constructor-map x_D) #f]
[(Δ-ref-constructor-map (Δ (x_D : t_D any)) x_D)
any]
[(Δ-ref-constructor-map (Δ (x_1 : t_1 any)) x_D)
(Δ-ref-constructor-map Δ x_D)])
;; TODO: Should not use Δ-ref-type
(define-metafunction ttL
Δ-ref-constructor-type : Δ x x -> t
@ -127,6 +145,14 @@
;; TODO: Mix of pure Redex/escaping to Racket sometimes is getting confusing.
;; TODO: Justify, or stop.
;; Return the number of constructors that D has
(define-metafunction ttL
Δ-constructor-count : Δ D -> natural or #f
[(Δ-constructor-count Δ D)
,(length (term (x ...)))
(where (x ...) (Δ-ref-constructors Δ D))]
[(Δ-constructor-count Δ D) #f])
;; NB: Depends on clause order
(define-metafunction ttL
sequence-index-of : any (any ...) -> natural
@ -163,31 +189,47 @@
;; TODO: Test
#| TODO:
| This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true
| that (convert t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is convert to (Ξ-apply Ξ t)? Yes.
| that (equivalent t (Ξ-apply Ξ t))?
| Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)? Yes.
|#
(define-metafunction tt-ctxtL
Ξ-apply : Ξ t -> t
[(Ξ-apply hole t) t]
[(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))])
;; Compose multiple telescopes into a single telescope:
(define-metafunction tt-ctxtL
Ξ-compose : Ξ Ξ ... -> Ξ
[(Ξ-compose Ξ) Ξ]
[(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...)
(Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)])
;; Compute the number of arguments in a Ξ
(define-metafunction tt-ctxtL
Ξ-length : Ξ -> natural
[(Ξ-length hole) 0]
[(Ξ-length (Π (x : t) Ξ)) ,(add1 (term (Ξ-length Ξ)))])
;; Compute the number of applications in a Θ
(define-metafunction tt-ctxtL
Θ-length : Θ -> natural
[(Θ-length hole) 0]
[(Θ-length (Θ e)) ,(add1 (term (Θ-length Θ)))])
;; Convert an apply context to a sequence of terms
(define-metafunction tt-ctxtL
Θ->list : Θ -> (e ...)
[(Θ->list hole) ()]
[(Θ->list (Θ e))
(e_r ... e)
(where (e_r ...) (Θ->list Θ))])
(define-metafunction tt-ctxtL
list->Θ : (e ...) -> Θ
[(list->Θ ()) hole]
[(list->Θ (e e_r ...))
(in-hole (list->Θ (e_r ...)) (hole e))])
(define-metafunction tt-ctxtL
apply : e e ... -> e
[(apply e_f e ...)
(in-hole (list->Θ (e ...)) e_f)])
;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole.
(define-metafunction tt-ctxtL
Θ-ref : Θ natural -> e or #f
@ -209,6 +251,15 @@
[(Δ-ref-parameter-Ξ Δ x)
#f])
;; Return the number of parameters of D
(define-metafunction tt-ctxtL
Δ-parameter-count : Δ D -> natural or #f
[(Δ-parameter-count Δ D)
(Ξ-length Ξ)
(where Ξ (Δ-ref-parameter-Ξ Δ D))]
[(Δ-parameter-count Δ D)
#f])
;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-telescope : Δ x x -> Ξ
@ -226,6 +277,21 @@
(where (in-hole Ξ (in-hole Θ x_D))
(Δ-ref-constructor-type Δ x_D x_ci))])
;; Inner loop for Δ-constructor-noninductive-telescope
(define-metafunction tt-ctxtL
noninductive-loop : x Φ -> Φ
[(noninductive-loop x_D hole) hole]
[(noninductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))
(noninductive-loop x_D Φ_1)]
[(noninductive-loop x_D (Π (x : t) Φ_1))
(Π (x : t) (noninductive-loop x_D Φ_1))])
;; Returns the noninductive arguments to the constructor x_ci of the inductively defined type x_D
(define-metafunction tt-ctxtL
Δ-constructor-noninductive-telescope : Δ x x -> Ξ
[(Δ-constructor-noninductive-telescope Δ x_D x_ci)
(noninductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))])
;; Inner loop for Δ-constructor-inductive-telescope
;; NB: Depends on clause order
(define-metafunction tt-ctxtL
@ -254,6 +320,36 @@
(hypotheses-loop x_D t_P Φ_1))
(where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))])
;; Returns the inductive hypotheses required for the elimination method of constructor x_ci for
;; inductive type x_D, when eliminating with motive t_P.
(define-metafunction tt-ctxtL
Δ-constructor-inductive-hypotheses : Δ x x t -> Ξ
[(Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P)
(hypotheses-loop x_D t_P (Δ-constructor-inductive-telescope Δ x_D x_ci))])
(define-metafunction tt-ctxtL
Δ-constructor-method-telescope : Δ x x t -> Ξ
[(Δ-constructor-method-telescope Δ x_D x_ci t_P)
(Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci)))))
hole)
(where Θ_p (Δ-constructor-parameters Δ x_D x_ci))
(where Ξ_a (Δ-constructor-telescope Δ x_D x_ci))
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P))
(where x_mi ,(variable-not-in (term (t_P Δ)) 'x-mi))])
;; fold Ξ-compose over map Δ-constructor-method-telescope over the list of constructors
(define-metafunction tt-ctxtL
method-loop : Δ x t (x ...) -> Ξ
[(method-loop Δ x_D t_P ()) hole]
[(method-loop Δ x_D t_P (x_0 x_rest ...))
(Ξ-compose (Δ-constructor-method-telescope Δ x_D x_0 t_P) (method-loop Δ x_D t_P (x_rest ...)))])
;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P
(define-metafunction tt-ctxtL
Δ-methods-telescope : Δ x t -> Ξ
[(Δ-methods-telescope Δ x_D t_P)
(method-loop Δ x_D t_P (Δ-ref-constructors Δ x_D))])
;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result
;; is in universe U.
;;
@ -269,40 +365,29 @@
;; Ξ_P*D is the telescope of the parameters of x_D and
;; the witness of type x_D (applied to the parameters)
;; Ξ_m is the telescope of the methods for x_D
;; Returns the inductive hypotheses required for the elimination method of constructor c_i for
;; inductive type D, when eliminating with motive t_P.
(define-metafunction tt-ctxtL
Δ-constructor-inductive-hypotheses : Δ D c t -> Ξ
[(Δ-constructor-inductive-hypotheses Δ D c_i t_P)
(hypotheses-loop D t_P (Δ-constructor-inductive-telescope Δ D c_i))])
;; Returns the type of the method corresponding to c_i
(define-metafunction tt-ctxtL
Δ-constructor-method-type : Δ D c t -> t
[(Δ-constructor-method-type Δ D c_i t_P)
(in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a c_i))))
(where Θ_p (Δ-constructor-parameters Δ D c_i))
(where Ξ_a (Δ-constructor-telescope Δ D c_i))
(where Ξ_h (Δ-constructor-inductive-hypotheses Δ D c_i t_P))])
(define-metafunction tt-ctxtL
Δ-method-types : Δ D e -> (t ...)
[(Δ-method-types Δ D e)
,(map (lambda (c) (term (Δ-constructor-method-type Δ D ,c e))) (term (c ...)))
(where (c ...) (Δ-ref-constructors Δ D))])
(define-metafunction tt-ctxtL
Δ-motive-type : Δ D U -> t
[(Δ-motive-type Δ D U)
(in-hole Ξ_P*D U)
(where Ξ (Δ-ref-parameter-Ξ Δ D))
Δ-elim-type : Δ x U -> t
[(Δ-elim-type Δ x_D U)
(Π (x_P : (in-hole Ξ_P*D U))
;; The methods Ξ_m for each constructor of type x_D
(in-hole Ξ_m
;; And finally, the parameters and discriminant
(in-hole Ξ_P*D
;; The result is (P a ... (x_D a ...)), i.e., the motive
;; applied to the paramters and discriminant
(Ξ-apply Ξ_P*D x_P))))
;; Get the parameters of x_D
(where Ξ (Δ-ref-parameter-Ξ Δ x_D))
;; A fresh name to bind the discriminant
(where x ,(variable-not-in (term (Δ D Ξ)) 'x-D))
(where x ,(variable-not-in (term (Δ Γ x_D Ξ)) 'x-D))
;; The telescope (∀ a -> ... -> (D a ...) hole), i.e.,
;; of the indices and the inductive type applied to the
;; indices
(where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ D)) hole)))])
;; of the parameters and the inductive type applied to the
;; parameters
(where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ x_D)) hole)))
;; A fresh name for the motive
(where x_P ,(variable-not-in (term (Δ Γ x_D Ξ Ξ_P*D x)) 'x-P))
;; The types of the methods for this inductive.
(where Ξ_m (Δ-methods-telescope Δ x_D x_P))])
;;; ------------------------------------------------------------------------
;;; Dynamic semantics
@ -310,21 +395,16 @@
;;; inductively defined type x with a motive whose result is in universe U
(define-extended-language tt-redL tt-ctxtL
(v ::= x U (Π (x : t) t) (λ (x : t) t) (in-hole Θv c))
(Θv ::= hole (Θv v))
(C-elim ::= (elim D t_P (e_i ...) (e_m ...) hole))
;; call-by-value
(E ::= hole (E e) (v E)
(elim D e (e ...) (v ... E e ...) e)
(elim D e (e ...) (v ...) E)
;; reduce under Π (helps with typing checking)
;; TODO: Should be done in conversion judgment
(Π (x : v) E) (Π (x : E) e)))
;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However,
;; determining whether or not it is partially applied cannot be done with the grammar alone.
(v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U)))
(Θv ::= hole (Θv v))
;; call-by-value, plus reduce under Π (helps with typing checking)
(E ::= hole (E e) (v E) (Π (x : v) E) (Π (x : E) e)))
(define Θv? (redex-match? tt-redL Θv))
(define E? (redex-match? tt-redL E))
(define v? (redex-match? tt-redL v))
#|
| The elim form must appear applied like so:
| (elim D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...))
@ -340,6 +420,75 @@
|
| Using contexts, this appears as (in-hole Θ ((elim D U) v_P))
|#
;;; NB: Next 3 meta-function Assume of Θ n constructors, j parameters, n+j+1-th element is discriminant
;; Given the apply context Θ in which an elimination of D with motive
;; v of type U appears, extract the parameters p ... from Θ.
(define-metafunction tt-redL
elim-parameters : Δ D Θ -> Θ
[(elim-parameters Δ D Θ)
;; Drop the methods, take the parameters
(list->Θ
,(take
(drop (term (Θ->list Θ)) (term (Δ-constructor-count Δ D)))
(term (Δ-parameter-count Δ D))))])
;; Given the apply context Θ in which an elimination of D with motive
;; v of type U appears, extract the methods m_0 ... m_n from Θ.
(define-metafunction tt-redL
elim-methods : Δ D Θ -> Θ
[(elim-methods Δ D Θ)
;; Take the methods, one for each constructor
(list->Θ
,(take
(term (Θ->list Θ))
(term (Δ-constructor-count Δ D))))])
;; Given the apply context Θ in which an elimination of D with motive
;; v of type U appears, extract the discriminant (c_i a ...) from Θ.
(define-metafunction tt-redL
elim-discriminant : Δ D Θ -> e
[(elim-discriminant Δ D Θ)
;; Drop the methods, the parameters, and take the last element
,(car
(drop
(drop (term (Θ->list Θ)) (term (Δ-constructor-count Δ D)))
(term (Δ-parameter-count Δ D))))])
;; Check that Θ is valid and ready to be evaluated as the arguments to an elim.
;; has length m = n + j + 1 and D has n constructors and j parameters,
;; and the 1 represents the discriminant.
;; discharges assumption for previous 3 meta-functions
(define-metafunction tt-redL
Θ-valid : Δ D Θ -> #t or #f
[(Θ-valid Δ D Θ)
#t
(where natural_m (Θ-length Θ))
(where natural_n (Δ-constructor-count Δ D))
(where natural_j (Δ-parameter-count Δ D))
(side-condition (= (+ (term natural_n) (term natural_j) 1) (term natural_m)))
;; As Cur allows reducing (through reflection) open terms,
;; check that the discriminant is a canonical form so that
;; reduction can proceed; otherwise not valid.
(where (in-hole Θ_i c_i) (elim-discriminant Δ D Θ))
(where D (Δ-key-by-constructor Δ c_i))]
[(Θ-valid Δ D Θ) #f])
(module+ test
(require rackunit)
(check-equal?
(term (Θ-length (((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)))
3)
(check-true
(term
(Θ-valid
(( (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat))))) (bool : (Unv 0) ((true : bool) (false : bool))))
nat
(((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)))))
(define-metafunction tt-ctxtL
is-inductive-argument : Δ D t -> #t or #f
;; Think this only works in call-by-value. A better solution would
@ -353,34 +502,39 @@
;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i,
;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i)
;; TODO TTEESSSSSTTTTTTTT
(define-metafunction tt-redL
Δ-inductive-elim : Δ D C-elim Θ -> Θ
(define-metafunction tt-ctxtL
Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ
;; NB: If metafunction fails, recursive
;; NB: elimination will be wrong. This will introduced extremely sublte bugs,
;; NB: inconsistency, failure of type safety, and other bad things.
;; NB: It should be tested and audited thoroughly
[(Δ-inductive-elim any ... hole)
hole]
[(Δ-inductive-elim Δ D C-elim (Θ_c t_i))
((Δ-inductive-elim Δ D C-elim Θ_c)
(in-hole C-elim t_i))
(side-condition (term (is-inductive-argument Δ D t_i)))]
[(Δ-inductive-elim any ... (Θ_c t_i))
(Δ-inductive-elim any ... Θ_c)])
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (Θ_i t_i))
((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)
(in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P)))
(side-condition (term (is-inductive-argument Δ x_D t_i)))]
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (Θ_i t_i))
(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i)]
[(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m hole)
hole])
(define tt-->
(reduction-relation tt-redL
(--> (Δ (in-hole E ((λ (x : t_0) t_1) t_2)))
(Δ (in-hole E (subst t_1 x t_2)))
-->β)
(--> (Δ (in-hole E (elim D e_motive (e_i ...) (v_m ...) (in-hole Θv_c c))))
(Δ (in-hole E (in-hole Θ_mi v_mi)))
;; Find the method for constructor c_i, relying on the order of the arguments.
(where natural (Δ-constructor-index Δ D c))
(where v_mi ,(list-ref (term (v_m ...)) (term natural)))
(--> (Δ (in-hole E (in-hole Θv ((elim D U) v_P))))
(Δ (in-hole E (in-hole Θ_r (in-hole Θv_i v_mi))))
;; Check that Θv is valid to avoid capturing other things
(side-condition (term (Θ-valid Δ D Θv)))
;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and
;; the discriminant: the constructor c_i applied to its argument Θv_i
(where Θv_p (elim-parameters Δ D Θv))
(where Θv_m (elim-methods Δ D Θv))
(where (in-hole Θv_i c_i) (elim-discriminant Δ D Θv))
;; Find the method for constructor x_ci, relying on the order of the arguments.
(where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ D c_i)))
;; Generate the inductive recursion
(where Θ_ih (Δ-inductive-elim Δ D (elim D e_motive (e_i ...) (v_m ...) hole) Θv_c))
(where Θ_mi (in-hole Θ_ih Θv_c))
(where Θ_r (Δ-inductive-elim Δ D U v_P Θv_p Θv_m Θv_i))
-->elim)))
(define-metafunction tt-redL
@ -396,6 +550,16 @@
(where (_ e_r)
,(car (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)))])
(define-judgment-form tt-redL
#:mode (equivalent I I I)
#:contract (equivalent Δ t t)
[(where t_2 (reduce Δ t_0))
(where t_3 (reduce Δ t_1))
(side-condition (α-equivalent? t_2 t_3))
----------------- "≡-αβ"
(equivalent Δ t_0 t_1)])
;;; ------------------------------------------------------------------------
;;; Type checking and synthesis
@ -405,24 +569,6 @@
(Γ ::= (Γ x : t)))
(define Γ? (redex-match? tt-typingL Γ))
(define-judgment-form tt-typingL
#:mode (convert I I I I)
#:contract (convert Δ Γ t t)
[(side-condition ,(<= (term i_0) (term i_1)))
----------------- "≼-Unv"
(convert Δ Γ (Unv i_0) (Unv i_1))]
[(where t_2 (reduce Δ t_0))
(where t_3 (reduce Δ t_1))
(side-condition (α-equivalent? t_2 t_3))
----------------- "≼-αβ"
(convert Δ Γ t_0 t_1)]
[(convert Δ (Γ x : t_0) t_1 t_2)
----------------- "≼-Π"
(convert Δ Γ (Π (x : t_0) t_1) (Π (x : t_0) t_2))])
(define-metafunction tt-typingL
Γ-union : Γ Γ -> Γ
[(Γ-union Γ ) Γ]
@ -541,22 +687,16 @@
----------------- "DTR-Application"
(type-infer Δ Γ (e_0 e_1) t_3)]
[(type-check Δ Γ e_c (apply D e_i ...))
(type-infer Δ Γ e_motive (name t_motive (in-hole Ξ U)))
(convert Δ Γ t_motive (Δ-motive-type Δ D U))
(where (t_m ...) (Δ-method-types Δ D e_motive))
(type-check Δ Γ e_m t_m) ...
[(where t (Δ-elim-type Δ D U))
(type-infer Δ Γ t U_e)
----------------- "DTR-Elim_D"
(type-infer Δ Γ (elim D e_motive (e_i ...) (e_m ...) e_c)
(apply e_motive e_i ... e_c))])
(type-infer Δ Γ (elim D U) t)])
(define-judgment-form tt-typingL
#:mode (type-check I I I I)
#:contract (type-check Δ Γ e t)
[(type-infer Δ Γ e t_0)
(convert Δ Γ t t_0)
(equivalent Δ t t_0)
----------------- "DTR-Check"
(type-check Δ Γ e t)])

View File

@ -2,7 +2,7 @@
;; This module just provide module language sugar over the redex model.
(require
(except-in "redex-core.rkt" apply)
"redex-core.rkt"
redex/reduction-semantics
racket/provide-syntax
(for-syntax
@ -11,7 +11,7 @@
racket/syntax
(except-in racket/provide-transform export)
racket/require-transform
(except-in "redex-core.rkt" apply)
"redex-core.rkt"
redex/reduction-semantics))
(provide
;; Basic syntax
@ -30,10 +30,10 @@
[dep-provide provide]
[dep-require require]
[dep-lambda λ]
[dep-lambda lambda]
[dep-app #%app]
[dep-forall Π]
[dep-forall forall]
[dep-inductive data]
@ -47,6 +47,7 @@
[dep-void void])
begin
Type
assume
;; DYI syntax extension
define-syntax
begin-for-syntax
@ -60,10 +61,10 @@
(all-from-out racket/syntax)
cur->datum
cur-expand
cur-type-infer
cur-type-check?
cur-normalize
cur-step
type-infer/syn
type-check/syn?
normalize/syn
step/syn
cur-equal?))
(begin-for-syntax
@ -177,11 +178,10 @@
[e (parameterize ([gamma (extend-Γ/term gamma x t)])
(cur->datum #'e))])
(term (,(syntax->datum #'b) (,x : ,t) ,e)))]
[(elim D motive (i ...) (m ...) d)
(term (elim ,(cur->datum #'D) ,(cur->datum #'motive)
,(map cur->datum (syntax->list #'(i ...)))
,(map cur->datum (syntax->list #'(m ...)))
,(cur->datum #'d)))]
[(elim t1 t2)
(let* ([t1 (cur->datum #'t1)]
[t2 (cur->datum #'t2)])
(term (elim ,t1 ,t2)))]
[(#%app e1 e2)
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
(unless (or (inner-expand?) (type-infer/term reified-term))
@ -225,29 +225,29 @@
;; Reflection tools
(define (cur-normalize syn)
(define (normalize/syn syn)
(datum->cur
syn
(eval-cur syn)))
(define (cur-step syn)
(define (step/syn syn)
(datum->cur
syn
(term (step ,(delta) ,(subst-bindings (cur->datum syn))))))
;; Are these two terms equivalent in type-systems internal equational reasoning?
(define (cur-equal? e1 e2)
(and (judgment-holds (convert ,(delta) ,(gamma) ,(eval-cur e1) ,(eval-cur e2))) #t))
(and (judgment-holds (equivalent ,(delta) ,(eval-cur e1) ,(eval-cur e2))) #t))
;; TODO: Document local-env
(define (cur-type-infer syn #:local-env [env '()])
(define (type-infer/syn syn #:local-env [env '()])
(parameterize ([gamma (for/fold ([gamma (gamma)])
([(x t) (in-dict env)])
(extend-Γ/syn (thunk gamma) x t))])
(let ([t (type-infer/term (eval-cur syn))])
(and t (datum->cur syn t)))))
(define (cur-type-check? syn type)
(define (type-check/syn? syn type)
(type-check/term? (eval-cur syn) (eval-cur type)))
;; Takes a Cur term syn and an arbitrary number of identifiers ls. The cur term is
@ -411,9 +411,8 @@
;;
;; TODO: Can these be simplified further?
(define-syntax (dep-lambda syn)
(syntax-parse syn
#:datum-literals (:)
[(_ (x:id : t) e)
(syntax-case syn (:)
[(_ (x : t) e)
(syntax->curnel-syntax
(quasisyntax/loc syn (λ (x : t) e)))]))
@ -424,32 +423,30 @@
(quasisyntax/loc syn (#%app e1 e2)))]))
(define-syntax (dep-forall syn)
(syntax-parse syn
#:datum-literals (:)
[(_ (x:id : t) e)
(syntax-case syn (:)
[(_ (x : t) e)
(syntax->curnel-syntax
(quasisyntax/loc syn (Π (x : t) e)))]))
(define-syntax (Type syn)
(syntax-parse syn
[(_ i:nat)
(syntax-case syn ()
[(_ i)
(syntax->curnel-syntax
(quasisyntax/loc syn (Unv i)))]
[_ (quasisyntax/loc syn (Type 0))]))
(define-syntax (dep-inductive syn)
(syntax-parse syn
#:datum-literals (:)
[(_ i:id : ti (x1:id : t1) ...)
(syntax-case syn (:)
[(_ i : ti (x1 : t1) ...)
(begin
(extend-Δ/syn! delta #'i #'ti #'((x1 : t1) ...))
#'(void))]))
(define-syntax (dep-elim syn)
(syntax-parse syn
[(_ D:id motive (i ...) (m ...) e)
(syntax-case syn ()
[(_ D T)
(syntax->curnel-syntax
(quasisyntax/loc syn (elim D motive (i ...) (m ...) e)))]))
(quasisyntax/loc syn (elim D T)))]))
(define-syntax-rule (dep-void) (void))
@ -487,3 +484,15 @@
(extend-Γ/term! gamma id (type-infer/term e))
(add-binding/term! id e)
#'(void))]))
(define-syntax (assume syn)
(syntax-parse syn
[(_ id:id t)
(let ()
(printf "WARNING: Assuming ~a of type ~a.~n"
(syntax->datum #'id)
(syntax->datum #'t))
;; NB: Have to roll our own namespace rather than use built-in define so id is resolved at
;; compile time in redex, and at runtime in racket.
(extend-Γ/syn! gamma #'id #'t)
#'(void))]))

View File

@ -1,2 +1,2 @@
#lang s-exp syntax/module-reader
cur
cur/cur

View File

@ -1,16 +1,11 @@
#lang s-exp "main.rkt"
#lang s-exp "cur.rkt"
;; Olly: The OTT-Like LibrarY
;; TODO: Automagically create a parser from bnf grammar
(require
"stdlib/sugar.rkt"
"stdlib/nat.rkt"
;; TODO: "real-"? More like "curnel-"
(only-in
"main.rkt"
[#%app real-app]
[elim real-elim]
[Π real-forall]
[λ real-lambda]))
(only-in "cur.rkt" [#%app real-app] [elim real-elim] [forall real-forall] [lambda real-lambda]))
(provide
define-relation
@ -32,7 +27,7 @@
(coq-defns (format "~a~a~n" (coq-defns) str)))
(define (constructor-args syn)
(syntax-parse (cur-type-infer syn)
(syntax-parse (type-infer/syn syn)
#:datum-literals (Π :)
[(Π (x:id : t) body)
(cons #'x (constructor-args #'body))]
@ -95,18 +90,8 @@
(cur->coq #'t))]))))
"")]
[(Type i) "Type"]
[(real-elim var:id motive (i ...) (m ...) d)
(format
"(~a_rect ~a~a~a ~a)"
(cur->coq #'var)
(cur->coq #'motive)
(for/fold ([strs ""])
([m (syntax->list #'(m ...))])
(format "~a ~a" strs (cur->coq m)))
(for/fold ([strs ""])
([i (syntax->list #'(i ...))])
(format "~a ~a" strs (cur->coq i)))
(cur->coq #'d))]
[(real-elim var t)
(format "~a_rect" (cur->coq #'var))]
[(real-app e1 e2)
(format "(~a ~a)" (cur->coq #'e1) (cur->coq #'e2))]
[e:id (sanitize-id (format "~a" (syntax->datum #'e)))])))

View File

@ -1,4 +1,4 @@
#lang s-exp "../main.rkt"
#lang s-exp "../cur.rkt"
(require "sugar.rkt")
(provide Bool true false if not and or)

View File

@ -1,4 +1,4 @@
#lang s-exp "../main.rkt"
#lang s-exp "../cur.rkt"
(require
"nat.rkt"
"maybe.rkt"

View File

@ -1,4 +1,4 @@
#lang s-exp "../main.rkt"
#lang s-exp "../cur.rkt"
(require "sugar.rkt")
(provide Maybe none some some/i)
@ -9,5 +9,5 @@
(define-syntax (some/i syn)
(syntax-case syn ()
[(_ a)
(let ([a-ty (cur-type-infer #'a)])
(let ([a-ty (type-infer/syn #'a)])
#`(some #,a-ty a))]))

View File

@ -1,4 +1,4 @@
#lang s-exp "../main.rkt"
#lang s-exp "../cur.rkt"
(require "sugar.rkt" "bool.rkt")
;; TODO: override (all-defined-out) to enable exporting all these
;; properly.

View File

@ -1,4 +1,4 @@
#lang s-exp "../main.rkt"
#lang s-exp "../cur.rkt"
(require "sugar.rkt")
;; TODO: Handle multiple provide forms properly
;; TODO: Handle (all-defined-out) properly
@ -31,8 +31,8 @@
(define-syntax (conj/i syn)
(syntax-case syn ()
[(_ a b)
(let ([a-type (cur-type-infer #'a)]
[b-type (cur-type-infer #'b)])
(let ([a-type (type-infer/syn #'a)]
[b-type (type-infer/syn #'b)])
#`(conj #,a-type #,b-type a b))]))
(define thm:and-is-symmetric
@ -71,12 +71,11 @@
(define proof:A-or-A
(lambda (A : Type) (c : (Or A A))
;; TODO: What should the motive be?
(elim Or (lambda (A : Type) (B : Type) (c : (Or A B)) A)
(A A)
((lambda (A : Type) (B : Type) (a : A) a)
;; TODO: How do we know B is A?
(lambda (A : Type) (B : Type) (b : B) b))
c)))
(elim Or Type (lambda (A : Type) (B : Type) (c : (Or A B)) A)
(lambda (A : Type) (B : Type) (a : A) a)
;; TODO: How do we know B is A?
(lambda (A : Type) (B : Type) (b : B) b)
A A c)))
(qed thm:A-or-A proof:A-or-A)
|#

View File

@ -1,4 +1,4 @@
#lang s-exp "../main.rkt"
#lang s-exp "../cur.rkt"
(provide
->
lambda
@ -6,12 +6,10 @@
[-> ]
[-> forall]
[-> ]
[-> Π]
[-> Pi]
[lambda λ])
#%app
define
:
elim
define-type
match
recur
@ -27,10 +25,10 @@
query-type)
(require
(only-in "../main.rkt"
(only-in "../cur.rkt"
[elim real-elim]
[#%app real-app]
[λ real-lambda]
[Π real-Π]
[lambda real-lambda]
[define real-define]))
(begin-for-syntax
@ -53,7 +51,7 @@
[(_ d:parameter-declaration ...+ result:result-type)
(foldr (lambda (src name type r)
(quasisyntax/loc src
(real-Π (#,name : #,type) #,r)))
(forall (#,name : #,type) #,r)))
#'result
(attribute d)
(attribute d.name)
@ -99,61 +97,13 @@
(define-syntax define-type
(syntax-rules ()
[(_ (name (a : t) ...) body)
(define name (-> (a : t) ... body))]
(define name (forall (a : t) ... body))]
[(_ name type)
(define name type)]))
;; Cooperates with define to allow Haskell-esque type annotations
#| TODO NB:
| This method of cooperating macros is sort of a terrible
| hack. Instead, need principled way of adding/retrieving information
| to/from current module. E.g. perhaps provide extensions an interface to
| module's term environment and inductive signature. Then, :: could add
| new "id : type" to environment, and define could extract type and use.
|#
(begin-for-syntax
(define annotation-dict (make-hash))
(define (annotation->types type-syn)
(let loop ([ls '()]
[syn type-syn])
(syntax-parse (cur-expand syn)
#:datum-literals (:)
[(real-Π (x:id : type) body)
(loop (cons #'type ls) #'body)]
[_ (reverse ls)]))))
(define-syntax (: syn)
(syntax-parse syn
[(_ name:id type:expr)
;; NB: Unhygenic; need to reuse Racket's identifiers, and make this type annotation a syntax property
(syntax-parse (cur-expand #'type)
#:datum-literals (:)
[(real-Π (x:id : type) body) (void)]
[_
(raise-syntax-error
':
"Can only declare annotations for functions, but not a function type"
syn)])
(dict-set! annotation-dict (syntax->datum #'name) (annotation->types #'type))
#'(void)]))
;; TODO: Allow inferring types as in above TODOs for lambda, forall
(define-syntax (define syn)
(syntax-parse syn
#:datum-literals (:)
[(define (name:id x:id ...) body)
(cond
[(dict-ref annotation-dict (syntax->datum #'name)) =>
(lambda (anns)
(quasisyntax/loc syn
(real-define name (lambda #,@(for/list ([x (syntax->list #'(x ...))]
[type anns])
#`(#,x : #,type)) body))))]
[else
(raise-syntax-error
'define
"Cannot omit type annotations unless you have declared them with (: name type) form first."
syn)])]
(syntax-case syn ()
[(define (name (x : t) ...) body)
(quasisyntax/loc syn
(real-define name (lambda (x : t) ... body)))]
@ -161,67 +111,8 @@
(quasisyntax/loc syn
(real-define id body))]))
#|
(begin-for-syntax
(define (type->telescope syn)
(syntax-parse (cur-expand syn)
#:literals (real-Π)
#:datum-literals (:)
[(real-Π (x:id : t) body)
(cons #'(x : t) (type->telescope #'body))]
[_ '()]))
(define (type->body syn)
(syntax-parse syn
#:literals (real-Π)
#:datum-literals (:)
[(real-Π (x:id : t) body)
(type->body #'body)]
[e #'e]))
(define (constructor-indices D syn)
(let loop ([syn syn]
[args '()])
(syntax-parse (cur-expand syn)
#:literals (real-app)
[D:id args]
[(real-app e1 e2)
(loop #'e1 (cons #'e2 args))])))
(define (inductive-index-telescope D)
(type->telescope (cur-type-infer D)))
(define (inductive-method-telescope D motive)
(for/list ([syn (cur-constructor-map D)])
(with-syntax ([(c : t) syn]
[name (gensym (format-symbol "~a-~a" #'c 'method))]
[((arg : arg-type) ...) (type->telescope #'t)]
[((rarg : rarg-type) ...) (constructor-recursive-args D #'((arg : arg-type) ...))]
[((ih : ih-type) ...) (constructor-inductive-hypotheses #'((rarg : rarg-type) ...) motive)]
[(iarg ...) (constructor-indices D (type->body #'t))]
)
#`(name : (forall (arg : arg-type) ...
(ih : ih-type) ...
(motive iarg ...)))))))
(define-syntax (elim syn)
(syntax-parse syn
[(elim D:id U e ...)
(with-syntax ([((x : t) ...) (inductive-index-telescope #'D)]
[motive (gensym 'motive)]
[y (gensym 'y)]
[disc (gensym 'disc)]
[((method : method-type) ...) (inductive-method-telescope #'D #'motive)])
#`((lambda
(motive : (forall (x : t) ... (y : (D x ...)) U))
(method : ) ...
(x : t) ...
(disc : (D x ...)) ...
(real-elim D motive (x ...) (method ...) disc))
e ...)
)
]))
|#
(define-syntax-rule (elim t1 t2 e ...)
((real-elim t1 t2) e ...))
;; Quite fragie to give a syntactic treatment of pattern matching -> eliminator. Replace with "Elimination with a Motive"
(begin-for-syntax
@ -268,7 +159,7 @@
#:attr types
;; TODO: Detect failure, report error/suggestions
(for/list ([e (attribute indices)])
(or (cur-type-infer e)
(or (type-infer/syn e)
(raise-syntax-error
'match
(format
@ -289,7 +180,7 @@
(lambda (return)
;; NB: unhygenic
;; Normalize at compile-time, for efficiency at run-time
(cur-normalize
(normalize/syn
#`((lambda
;; TODO: utteraly fragile; relines on the indices being referred to by name, not computed
;; works only for simple type familes and simply matches on them
@ -350,7 +241,7 @@
(define/syntax-parse type:inductive-type-declaration (cur-expand type-syn))
(let ([ih-name (quasisyntax/loc src #,(format-id name-syn "ih-~a" name-syn))]
;; Normalize at compile-time, for efficiency at run-time
[ih-type (cur-normalize #`(#,motive #,@(attribute type.indices) #,name-syn))])
[ih-type (normalize/syn #`(#,motive #,@(attribute type.indices) #,name-syn))])
(dict-set! ih-dict (syntax->datum name-syn) ih-name)
(append decls (list #`(#,ih-name : #,ih-type)))))))
@ -362,7 +253,7 @@
(or maybe-return-type
;; Ignore errors when trying to infer this type; other attempt might succeed
(with-handlers ([values (lambda _ #f)])
(cur-type-infer #:local-env (attribute p.local-env) #'b)))))
(type-infer/syn #:local-env (attribute p.local-env) #'b)))))
(define-syntax-class (match-clause D motive)
(pattern
@ -398,7 +289,7 @@
(~optional
(~seq #:in ~! t)
#:defaults
([t (or (cur-type-infer #'d)
([t (or (type-infer/syn #'d)
(raise-syntax-error
'match
"Could not infer discrimnant's type. Try using #:in to declare it."
@ -423,9 +314,15 @@
(quasisyntax/loc syn
(elim
D.inductive-name
#,(or
(type-infer/syn (attribute return-type))
(raise-syntax-error
'match
"Could not infer type of motive. Sorry, you'll have to use elim."
syn))
motive
#,(attribute D.indices)
(c.method ...)
c.method ...
#,@(attribute D.indices)
d))]))
(begin-for-syntax
@ -437,14 +334,14 @@
#:attr type (cond
[(attribute t)
;; TODO: Code duplication in ::
(unless (cur-type-check? #'e #'t)
(unless (type-check/syn? #'e #'t)
(raise-syntax-error
'let
(format "Term ~a does not have expected type ~a. Inferred type was ~a"
(cur->datum #'e) (cur->datum #'t) (cur->datum (cur-type-infer #'e)))
(cur->datum #'e) (cur->datum #'t) (cur->datum (type-infer/syn #'e)))
#'e (quasisyntax/loc #'x (x e))))
#'t]
[(cur-type-infer #'e)]
[(type-infer/syn #'e)]
[else
(raise-syntax-error
'let
@ -455,29 +352,29 @@
[(let (c:let-clause ...) body)
#'((lambda (c.id : c.type) ... body) c.e ...)]))
;; Normally type checking will only happen if a term is actually used/appears at top-level.
;; This forces a term to be checked against a particular type.
;; Normally type checking will only happen if a term is actually used. This forces a term to be
;; checked against a particular type.
(define-syntax (:: syn)
(syntax-case syn ()
[(_ pf t)
(begin
;; TODO: Code duplication in let-clause pattern
(unless (cur-type-check? #'pf #'t)
(unless (type-check/syn? #'pf #'t)
(raise-syntax-error
'::
(format "Term ~a does not have expected type ~a. Inferred type was ~a"
(cur->datum #'pf) (cur->datum #'t) (cur->datum (cur-type-infer #'pf)))
(cur->datum #'pf) (cur->datum #'t) (cur->datum (type-infer/syn #'pf)))
syn))
#'(void))]))
(define-syntax (run syn)
(syntax-case syn ()
[(_ expr) (cur-normalize #'expr)]))
[(_ expr) (normalize/syn #'expr)]))
(define-syntax (step syn)
(syntax-case syn ()
[(_ expr)
(let ([t (cur-step #'expr)])
(let ([t (step/syn #'expr)])
(displayln (cur->datum t))
t)]))
@ -493,6 +390,6 @@
(syntax-case syn ()
[(_ term)
(begin
(printf "\"~a\" has type \"~a\"~n" (syntax->datum #'term) (syntax->datum (cur-type-infer #'term)))
(printf "\"~a\" has type \"~a\"~n" (syntax->datum #'term) (syntax->datum (type-infer/syn #'term)))
;; Void is undocumented and a hack, but sort of works
#'(void))]))

View File

@ -1,4 +1,4 @@
#lang s-exp "../../main.rkt"
#lang s-exp "../../cur.rkt"
(require
(for-syntax racket/syntax))
(provide
@ -220,7 +220,7 @@
[pf (proof-state-proof ps)])
(unless (proof-state-proof-complete? ps)
(raise-syntax-error 'qed "Proof contains holes" (pf (current-hole-pretty-symbol))))
(unless (cur-type-check? pf t)
(unless (type-check/syn? pf t)
(raise-syntax-error 'qed "Invalid proof" pf t))
pf)))

View File

@ -1,4 +1,4 @@
#lang s-exp "../../main.rkt"
#lang s-exp "../../cur.rkt"
(require
"base.rkt"
(prefix-in basic: "standard.rkt")

View File

@ -1,4 +1,4 @@
#lang s-exp "../../main.rkt"
#lang s-exp "../../cur.rkt"
(require
"base.rkt"
(for-syntax racket/syntax))
@ -22,7 +22,7 @@
[(forall (x:id : P:expr) body:expr)
(let* ([ps (proof-state-extend-env ps name #'P)]
[ps (proof-state-current-goal-set ps #'body)]
[ps (proof-state-fill-proof-hole ps (lambda (x) #`(λ (#,name : P) #,x)))])
[ps (proof-state-fill-proof-hole ps (lambda (x) #`(lambda (#,name : P) #,x)))])
ps)]
[_ (error 'intro "Can only intro when current goal is of the form (∀ (x : P) body)")]))

View File

@ -1,4 +1,4 @@
#lang s-exp "../main.rkt"
#lang s-exp "../cur.rkt"
(require
"nat.rkt"
"bool.rkt"
@ -38,7 +38,7 @@
#`(define-syntax (#,name syn)
(syntax-case syn ()
[(_ arg args (... ...))
#`(#,(format-id syn "~a-~a" '#,name (cur-type-infer #'arg))
#`(#,(format-id syn "~a-~a" '#,name (type-infer/syn #'arg))
arg
args (... ...))]))))]))
@ -57,7 +57,7 @@
#`(begin
#,@(for/list ([def (syntax->list #'(defs ...))])
(let-values ([(name body) (process-def def)])
(unless (cur-type-check?
(unless (type-check/syn?
body
#`(#,(dict-ref
(dict-ref typeclasses (syntax->datum #'class))

View File

@ -3,5 +3,5 @@
(define deps '("base" ("redex-lib" #:version "1.11")))
(define build-deps '())
(define pkg-desc "implementation (no documentation, tests) part of \"cur\".")
(define version "0.4")
(define version "0.2")
(define pkg-authors '(wilbowma))

View File

@ -41,12 +41,11 @@
"\\| T-Bla : \\(forall g : gamma, \\(forall e : term, \\(forall t : type, \\(\\(\\(meow g\\) e\\) t\\)\\)\\)\\)\\."
(second (string-split t "\n"))))
(let ([t (cur->coq
#'(elim nat (lambda (x : nat) nat)
()
(z (lambda (x : nat) (ih-x : nat) ih-x))
#'(elim nat Type (lambda (x : nat) nat) z
(lambda (x : nat) (ih-x : nat) ih-x)
e))])
(check-regexp-match
"\\(nat_rect \\(fun x : nat => nat\\) z \\(fun x : nat => \\(fun ih_x : nat => ih_x\\)\\) e\\)"
"\\(\\(\\(\\(nat_rect \\(fun x : nat => nat\\)\\) z\\) \\(fun x : nat => \\(fun ih_x : nat => ih_x\\)\\)\\) e\\)"
t))
(check-regexp-match
"Definition thm_plus_commutes := \\(forall n : nat, \\(forall m : nat, \\(\\(\\(== nat\\) \\(\\(plus n\\) m\\)\\) \\(\\(plus m\\) n\\)\\)\\)\\).\n"

View File

@ -1,24 +0,0 @@
#lang cur
(require
cur/stdlib/sugar
rackunit)
(data Nat : Type
(z : Nat)
(s : (Π (x : Nat) Nat)))
(plus . : . (-> Nat Nat Nat))
(define (plus n m)
(match n
[z m]
[(s (x : Nat))
(s (recur x))]))
(check-equal?
(plus z z)
z)
(check-equal?
(plus (s z) z)
(s z))

View File

@ -81,6 +81,23 @@
(Π (a : S) (Π (b : B) ((and S) B)))
(subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
;; Various accessor tests
;; ------------------------------------------------------------------------
(check-equal?
(term (Δ-key-by-constructor ,Δ zero))
(term nat))
(check-equal?
(term (Δ-key-by-constructor ,Δ s))
(term nat))
(check-equal?
(term (Δ-ref-constructor-map ,Δ nat))
(term ((zero : nat) (s : (Π (x : nat) nat)))))
(check-equal?
(term (Δ-ref-constructor-map ,sigma false))
(term ()))
;; Telescope tests
;; ------------------------------------------------------------------------
;; Are these telescopes the same when filled with alpha-equivalent, and equivalently renamed, termed
@ -98,10 +115,41 @@
(term (Δ-ref-parameter-Ξ ,Δ4 and))
(term (Π (A : Type) (Π (B : Type) hole))))
(check-telescope-equiv?
(term (Ξ-compose
(Π (x : t_0) (Π (y : t_1) hole))
(Π (z : t_2) (Π (a : t_3) hole))))
(term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole))))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
(term (Π (m-zero : ((λ (x : nat) nat) zero))
(Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δ nat P))
(term (Π (m-zero : (P zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x)))))
hole))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat)))
(term (Π (m-zero : ((λ (x : nat) nat) zero))
(Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x)))))
hole))))
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))))
(term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B)
((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))
A)
B)
((((conj A) B) a) b)))))))
hole)))
(check-true (x? (term false)))
(check-true (Ξ? (term hole)))
(check-true (t? (term (λ (y : false) (Π (x : Type) x)))))
(check-true (redex-match? ttL ((x : t) ...) (term ())))
(check-telescope-equiv?
(term (Δ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x))))
(term hole))
;; Tests for inductive elimination
;; ------------------------------------------------------------------------
@ -109,32 +157,21 @@
(check-true
(redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero))))
(check-telescope-equiv?
(term (Δ-inductive-elim ,Δ nat
(elim nat (λ (x : nat) nat) ()
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
hole)
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole zero)))
(term (hole (elim nat (λ (x : nat) nat)
()
((s zero)
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero))))
(term (hole (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero))))
(check-telescope-equiv?
(term (Δ-inductive-elim ,Δ nat
(elim nat (λ (x : nat) nat) ()
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
hole)
(term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole
((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(hole (s zero))))
(term (hole (elim nat (λ (x : nat) nat) ()
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s zero)))))
(check-telescope-equiv?
(term (Δ-inductive-elim ,Δ nat
(elim nat (λ (x : nat) nat) ()
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
hole)
hole))
(term hole))
(term (hole (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s zero)))))
;; Tests for dynamic semantics
;; ------------------------------------------------------------------------
@ -142,8 +179,6 @@
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (v? (term (refl Nat))))
(check-true (v? (term ((refl Nat) z))))
(check-true (v? (term zero)))
(check-true (v? (term (s zero))))
;; TODO: Move equivalence up here, and use in these tests.
(check-equiv? (term (reduce (Unv 0))) (term (Unv 0)))
@ -153,71 +188,63 @@
(term (Π (x : t) (Unv 0))))
(check-not-equiv? (term (reduce (Π (x : t) ((Π (x_0 : t) (x_0 x)) x))))
(term (Π (x : t) (x x))))
(check-equal? (term (Δ-constructor-index ,Δ nat zero)) 0)
(check-equiv? (term (reduce ,Δ (elim nat (λ (x : nat) nat)
()
((s zero)
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero)))
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))
zero)))
(term (s zero)))
(check-equiv? (term (reduce ,Δ (elim nat (λ (x : nat) nat)
()
((s zero)
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s zero))))
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat)
(s (s x)))))
(s zero))))
(term (s (s zero))))
(check-equiv? (term (reduce ,Δ (elim nat (λ (x : nat) nat)
()
((s zero)
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
(s (s (s zero))))))
(term (s (s (s (s zero))))))
(check-equiv?
(term (reduce ,Δ
(elim nat (λ (x : nat) nat)
()
((s (s zero))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s (s zero)))))
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s (s zero)))))
(term (s (s (s (s zero))))))
(check-equiv?
(term (step ,Δ
(elim nat (λ (x : nat) nat)
()
((s (s zero))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s (s zero)))))
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s (s zero)))))
(term
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
(s zero))
(elim nat (λ (x : nat) nat)
()
((s (s zero))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s zero)))))
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s zero)))))
(check-equiv?
(term (step ,Δ (step ,Δ
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
(s zero))
(elim nat (λ (x : nat) nat)
()
((s (s zero))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s zero))))))
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
(s zero))))))
(term
((λ (ih-x1 : nat) (s ih-x1))
(((λ (x : nat) (λ (ih-x : nat) (s ih-x)))
zero)
(elim nat (λ (x : nat) nat)
()
((s (s zero))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
zero)))))
(((((elim nat Type) (λ (x : nat) nat))
(s (s zero)))
(λ (x : nat) (λ (ih-x : nat) (s ih-x))))
zero)))))
(define-syntax-rule (check-equivalent e1 e2)
(check-holds (convert e1 e2)))
(check-holds (equivalent e1 e2)))
(check-equivalent
(λ (x : Type) x) (λ (y : Type) y))
(check-equivalent
@ -316,42 +343,28 @@
U))
;; ---- Elim
;; TODO: Clean up/Reorganize these tests
(check-true
(redex-match? tt-typingL
(in-hole Θ_m (((elim x_D U) e_D) e_P))
(term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0)))))
(define Δtruth (term ( (truth : (Unv 0) ((T : truth))))))
(check-holds (type-infer ,Δtruth truth (in-hole Ξ U)))
(check-holds (type-infer ,Δtruth T (in-hole Θ_ai truth)))
(check-holds (type-infer ,Δtruth (λ (x : truth) (Unv 1))
(in-hole Ξ (Π (x : (in-hole Θ truth)) U))))
(check-equiv?
(term (Δ-motive-type ,Δtruth truth (Unv 2)))
(term (Π (x : truth) (Unv 2))))
(check-holds (type-check ,Δtruth (Unv 0) ,(car (term (Δ-method-types ,Δtruth truth (λ (x : truth) (Unv 1)))))))
(check-holds (type-check ,Δtruth (λ (x : truth) (Unv 1)) (Π (x : truth) (Unv 2))))
(check-equiv?
(term (apply (λ (x : truth) (Unv 1)) T))
(term ((λ (x : truth) (Unv 1)) T)))
(check-holds
(convert ,Δtruth (apply (λ (x : truth) (Unv 1)) T) (Unv 1)))
(check-holds (type-infer ,Δtruth
(check-telescope-equiv?
(term (Δ-methods-telescope ,Δtruth truth (λ (x : truth) (Unv 1))))
(term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole)))
(check-holds (type-infer ,Δtruth (elim truth Type) t))
(check-holds (type-check ( (truth : (Unv 0) ((T : truth))))
(elim truth (λ (x : truth) (Unv 1))
() ((Unv 0)) T)
t))
(check-holds (type-check ,Δtruth
(elim truth (λ (x : truth) (Unv 1))
() ((Unv 0)) T)
((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0))
T)
(Unv 1)))
(check-not-holds (type-check ( (truth : (Unv 0) ((T : truth))))
(elim truth Type () (Type) T)
((((elim truth (Unv 1)) Type) Type) T)
(Unv 1)))
(check-holds
(type-infer (Π (x2 : (Unv 0)) (Unv 0)) U))
@ -369,54 +382,47 @@
(check-holds (type-check ,Δ syn ...)))
(nat-test (Π (x : nat) nat) (Unv 0))
(nat-test (λ (x : nat) x) (Π (x : nat) nat))
(nat-test (elim nat (λ (x : nat) nat) ()
(zero (λ (x : nat) (λ (ih-x : nat) x)))
zero)
(nat-test (((((elim nat Type) (λ (x : nat) nat)) zero)
(λ (x : nat) (λ (ih-x : nat) x))) zero)
nat)
(nat-test nat (Unv 0))
(nat-test zero nat)
(nat-test s (Π (x : nat) nat))
(nat-test (s zero) nat)
;; TODO: Meta-function auto-currying and such
(check-holds
(type-infer ,Δ (λ (x : nat)
(elim nat (λ (x : nat) nat)
()
(zero
(λ (x : nat) (λ (ih-x : nat) x)))
x))
(type-infer ,Δ ((((elim nat (Unv 0)) (λ (x : nat) nat))
zero)
(λ (x : nat) (λ (ih-x : nat) x)))
t))
(nat-test (elim nat (λ (x : nat) nat)
()
(zero (λ (x : nat) (λ (ih-x : nat) x)))
zero)
(nat-test (((((elim nat (Unv 0)) (λ (x : nat) nat))
zero)
(λ (x : nat) (λ (ih-x : nat) x)))
zero)
nat)
(nat-test (elim nat (λ (x : nat) nat)
()
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero)
(nat-test (((((elim nat (Unv 0)) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero)
nat)
(nat-test (elim nat (λ (x : nat) nat)
()
((s zero) (λ (x : nat) (λ (ih-x : nat) (s (s x)))))
zero)
(nat-test (((((elim nat Type) (λ (x : nat) nat))
(s zero))
(λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)
nat)
(nat-test ( n : nat)
(elim nat (λ (x : nat) nat)
()
(zero (λ (x : nat) (λ (ih-x : nat) x)))
n)
(((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n)
nat)
(check-holds
(type-check (,Δ (bool : (Unv 0) ((btrue : bool) (bfalse : bool))))
( n2 : nat)
(elim nat (λ (x : nat) bool)
()
(btrue (λ (x : nat) (λ (ih-x : bool) bfalse)))
n2)
(((((elim nat (Unv 0)) (λ (x : nat) bool))
btrue)
(λ (x : nat) (λ (ih-x : bool) bfalse)))
n2)
bool))
(check-not-holds
(type-check ,Δ
(elim nat nat () ((s zero)) zero)
((((elim nat (Unv 0)) nat) (s zero)) zero)
nat))
(define lam (term (λ (nat : (Unv 0)) nat)))
(check-equivalent
@ -475,15 +481,15 @@
(in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P))))
(check-holds
(type-check (,Δ4 (true : (Unv 0) ((tt : true))))
(elim and
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
true)))
(true true)
((λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) tt)))))
((((conj true) true) tt) tt))
((((((elim and (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
true))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) tt)))))
true) true)
((((conj true) true) tt) tt))
true))
(check-true (Γ? (term ((( P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)))))
(check-holds
@ -501,7 +507,7 @@
((and B) A))))
(in-hole Ξ (Π (x : (in-hole Θ and)) U))))
(check-holds
(convert ,Δ4
(equivalent ,Δ4
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))
(Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0))))))
(check-holds
@ -512,15 +518,14 @@
(check-holds
(type-check ,Δ4
((( P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))
(elim and
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A))))
(P Q)
((λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
ab)
((((((elim and (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
P) Q) ab)
((and Q) P)))
(check-holds
(type-check (,Δ4 (true : (Unv 0) ((tt : true))))
@ -533,14 +538,14 @@
t))
(check-holds
(type-check (,Δ4 (true : (Unv 0) ((tt : true))))
(elim and
((((((elim and (Unv 0))
(λ (A : Type) (λ (B : Type) (λ (x : ((and A) B))
((and B) A))))
(true true)
((λ (A : (Unv 0))
((and B) A)))))
(λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) ((((conj B) A) b) a))))))
true) true)
((((conj true) true) tt) tt))
((and true) true)))
(define gamma (term ( temp863 : pre)))
@ -563,18 +568,21 @@
(check-holds
(type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x))
(in-hole Ξ (Π (x : (in-hole Θ false)) U))))
(check-true
(redex-match? tt-typingL
((in-hole Θ_m ((elim x_D U) e_P)) e_D)
(term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x)))
x))))
(check-holds
(type-check ,sigma (,gamma x : false)
(elim false (λ (y : false) (Π (x : Type) x)) () () x)
(((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x)
(Π (x : (Unv 0)) x)))
;; nat-equal? tests
(define zero?
(term (λ (n : nat)
(elim nat (λ (x : nat) bool) ()
(true (λ (x : nat) (λ (x_ih : bool) false)))
n))))
(term ((((elim nat Type) (λ (x : nat) bool))
true)
(λ (x : nat) (λ (x_ih : bool) false)))))
(check-holds
(type-check ,Δ ,zero? (Π (x : nat) bool)))
(check-equal?
@ -584,12 +592,9 @@
(term (reduce ,Δ (,zero? (s zero))))
(term false))
(define ih-equal?
(term (λ (ih : nat)
(elim nat (λ (x : nat) bool)
()
(false
(λ (x : nat) (λ (y : bool) (x_ih x))))
ih))))
(term ((((elim nat Type) (λ (x : nat) bool))
false)
(λ (x : nat) (λ (y : bool) (x_ih x))))))
(check-holds
(type-check ,Δ ( x_ih : (Π (x : nat) bool))
,ih-equal?
@ -601,13 +606,10 @@
(check-holds
(type-infer ,Δ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0))))
(define nat-equal?
(term (λ (n : nat)
(elim nat (λ (x : nat) (Π (x : nat) bool))
()
(,zero?
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
,ih-equal?)))
n))))
(term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool)))
,zero?)
(λ (x : nat) (λ (x_ih : (Π (x : nat) bool))
,ih-equal?)))))
(check-holds
(type-check ,Δ ( nat-equal? : (Π (x-D«4158» : nat) ((λ (x«4159» : nat) (Π (x«4160» : nat) bool)) x-D«4158»)))
((nat-equal? zero) zero)
@ -629,12 +631,19 @@
(check-true (Δ? Δ=))
(define refl-elim
(term (elim == (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((== A1) x1) y1)) nat))))
(bool true true)
((λ (A1 : (Unv 0)) (λ (x1 : A1) zero)))
((refl bool) true))))
(term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((==
A1)
x1)
y1))
nat)))))
(λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))
(check-holds
(type-check ,Δ= ,refl-elim nat))
(check-true
(redex-match?
tt-redL
(Δ (in-hole E (in-hole Θ ((elim x_D U) e_P))))
(term (,Δ= ,refl-elim))))
(check-true
(redex-match?
tt-redL

View File

@ -32,11 +32,11 @@
(:: (lambda (A : Type) (n : Nat) (none A)) (forall (A : Type) (-> Nat (Maybe A)))))
(check-equal?
(void)
(:: (elim List (lambda (A : Type) (ls : (List A)) Nat)
(Bool)
((lambda (A : Type) z)
(lambda (A : Type) (a : A) (ls : (List A)) (ih : Nat)
z))
(:: (elim List Type (lambda (A : Type) (ls : (List A)) Nat)
(lambda (A : Type) z)
(lambda (A : Type) (a : A) (ls : (List A)) (ih : Nat)
z)
Bool
(nil Bool))
Nat))

View File

@ -0,0 +1,38 @@
#lang cur
(require
cur/stdlib/sugar
cur/stdlib/nat
cur/stdlib/prop)
(assume f_equal
(-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B))
(== A a1 a2)
(== B (f a1) (f a2))))
(define plus_0_n
(elim Nat Type
(lambda (n : Nat) (== Nat n (plus z n)))
(refl Nat z)
(lambda (n : Nat) (ih : (== Nat n (plus z n)))
(f_equal Nat n (plus z n) Nat s ih))))
;; TODO: implicits
;; No way to define axioms in Cur, yet, although it is a simple change.
;; No implicits in Cur, yet
#;(define (plus_0_n (n : Nat))
(match n
;; TODO: This should work
#:return (== Nat n (plus z n))
[z (refl Nat z)]
[(s (n : Nat))
(f_equal Nat n (plus z n) Nat s (recur n))]))
(:: plus_0_n (forall (n : Nat) (== Nat n (plus z n))))
#;(define (plus_n_Sm (n : Nat) (m : Nat))
(elim Nat Type
(lambda (n : Nat) (== Nat (plus n m) (plus m n)))
(plus_n_0 m)
(lambda (y : Nat) (ih : ))
(elim == Type)))
#;(:: plus_n_Sm (forall (n : Nat) (m : Nat) (== (s (plus n m)) (plus n (s m)))))

View File

@ -11,11 +11,11 @@
(:: pf:proj1 thm:proj1)
(:: pf:proj2 thm:proj2)
(check-equal?
(elim == (λ (A : Type) (x : A) (y : A) (p : (== A x y)) Nat)
(Bool
true
true)
((λ (A : Type) (x : A) z))
(elim == Type (λ (A : Type) (x : A) (y : A) (p : (== A x y)) Nat)
(λ (A : Type) (x : A) z)
Bool
true
true
(refl Bool true))
z)

View File

@ -11,7 +11,9 @@
(equal? : (forall (a : A) (b : A) Bool)))
(impl (Eqv Bool)
(define (equal? (a : Bool) (b : Bool))
(if a b (not b))))
(if a
(if b true false)
(if b false true))))
(impl (Eqv Nat)
(define equal? nat-equal?))
(check-equal?

View File

@ -1,16 +0,0 @@
#lang sweet-exp cur
require
cur/stdlib/sugar
cur/stdlib/bool
cur/stdlib/nat
rackunit
check-equal?
if true false true
false
define + plus
check-equal?
{z + s(z)}
s(z)

View File

@ -1,7 +1,7 @@
#lang info
(define collection 'multi)
(define deps '())
(define build-deps '("base" "rackunit-lib" ("cur-lib" #:version "0.4") "sweet-exp"))
(define build-deps '("base" "rackunit-lib" ("cur-lib" #:version "0.2")))
(define update-implies '("cur-lib"))
(define pkg-desc "Tests for \"cur\".")
(define pkg-authors '(wilbowma))