#lang s-exp "../cur.rkt" (provide -> ->* forall* lambda* (rename-out [-> →] [->* →*] [lambda* λ*] [forall* ∀*]) #%app define elim define-type case case* run step step-n query-type ;; don't use these define-theorem qed ) (require (only-in "../cur.rkt" [elim real-elim] [#%app real-app] [define real-define])) (define-syntax (-> syn) (syntax-case syn () [(_ t1 t2) #`(forall (#,(gensym) : t1) t2)])) (define-syntax ->* (syntax-rules () [(->* a) a] [(->* a a* ...) (-> a (->* a* ...))])) (define-syntax forall* (syntax-rules (:) [(_ (a : t) (ar : tr) ... b) (forall (a : t) (forall* (ar : tr) ... b))] [(_ b) b])) (define-syntax lambda* (syntax-rules (:) [(_ (a : t) (ar : tr) ... b) (lambda (a : t) (lambda* (ar : tr) ... b))] [(_ b) b])) (define-syntax (#%app syn) (syntax-case syn () [(_ e1 e2) #'(real-app e1 e2)] [(_ e1 e2 e3 ...) #'(#%app (#%app e1 e2) e3 ...)])) (define-syntax define-type (syntax-rules () [(_ (name (a : t) ...) body) (define name (forall* (a : t) ... body))] [(_ name type) (define name type)])) (define-syntax (define syn) (syntax-case syn () [(define (name (x : t) ...) body) #'(real-define name (lambda* (x : t) ... body))] [(define id body) #'(real-define id body)])) (define-syntax-rule (elim t1 t2 e ...) ((real-elim t1 t2) e ...)) (begin-for-syntax (define (rewrite-clause clause) (syntax-case clause (: IH:) [((con (a : A) ...) IH: ((x : t) ...) body) #'(lambda* (a : A) ... (x : t) ... body)] [(e body) #'body]))) ;; TODO: Expects clauses in same order as constructors as specified when ;; TODO: inductive D is defined. ;; TODO: Assumes D has no parameters (define-syntax (case syn) ;; duplicated code (define (clause-body syn) (syntax-case (car (syntax->list syn)) (: IH:) [((con (a : A) ...) IH: ((x : t) ...) body) #'body] [(e body) #'body])) (syntax-case syn (=>) [(_ e clause* ...) (let* ([D (type-infer/syn #'e)] [M (type-infer/syn (clause-body #'(clause* ...)))] [U (type-infer/syn M)]) #`(elim #,D #,U (lambda (x : #,D) #,M) #,@(map rewrite-clause (syntax->list #'(clause* ...))) e))])) (define-syntax (case* syn) (syntax-case syn () [(_ D U e (p ...) P clause* ...) #`(elim D U P #,@(map rewrite-clause (syntax->list #'(clause* ...))) p ... e)])) (define-syntax-rule (define-theorem name prop) (define name prop)) (define-syntax (qed stx) (syntax-case stx () [(_ t pf) (begin (unless (type-check/syn? #'pf #'t) (raise-syntax-error 'qed "Invalid proof" #'pf #'t)) #'pf)])) (define-syntax (run syn) (syntax-case syn () [(_ expr) (normalize/syn #'expr)])) (define-syntax (step syn) (syntax-case syn () [(_ expr) (let ([t (step/syn #'expr)]) (displayln (cur->datum t)) t)])) (define-syntax (step-n syn) (syntax-case syn () [(_ n expr) (for/fold ([expr #'expr]) ([i (in-range (syntax->datum #'n))]) #`(step #,expr))])) (define-syntax (query-type syn) (syntax-case syn () [(_ term) (begin (printf "\"~a\" has type \"~a\"~n" (syntax->datum #'term) (syntax->datum (type-infer/syn #'term))) ;; Void is undocumented and a hack, but sort of works #'(void))])) (module+ test (require rackunit (submod "..")) (check-equal? ((λ* (x : (Type 1)) (y : (∀* (x : (Type 1)) (Type 1))) (y x)) Type (λ (x : (Type 1)) x)) Type) (check-equal? ((λ* (x : (Type 1)) (y : (→* (Type 1) (Type 1))) (y x)) Type (λ (x : (Type 1)) x)) Type) (check-equal? ((λ* (x : (Type 1)) (y : (→ (Type 1) (Type 1))) (y x)) Type (λ (x : (Type 1)) x)) Type))