#lang racket/base (require racket/function redex/reduction-semantics) (provide (all-defined-out)) (set-cache-size! 10000) ;; Test suite setup. (module+ test (require rackunit (only-in racket/set set=?)) (define-syntax-rule (check-holds (e ...)) (check-true (judgment-holds (e ...)))) (define-syntax-rule (check-not-holds (e ...)) (check-false (judgment-holds (e ...)))) (define-syntax-rule (check-equiv? e1 e2) (check (default-equiv) e1 e2)) (define-syntax-rule (check-not-equiv? e1 e2) (check (compose not (default-equiv)) e1 e2))) #| References: | http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf | https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf | http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf | http://people.cs.kuleuven.be/~jesper.cockx/Without-K/Pattern-matching-without-K.pdf | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.74 | http://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf |# #| ttL is the core language of Cur. Very similar to TT (Idirs core) and Luo's UTT. Surface | langauge should provide short-hand, such as -> for non-dependent function types, and type | inference. |# (define-language ttL (i j k ::= natural) (U ::= (Unv i)) (t e ::= U (λ (x : t) e) x (Π (x : t) t) (e e) (elim D U)) ;; Δ (signature). (inductive-name : type ((constructor : type) ...)) ;; NB: Δ is a map from a name x to a pair of it's type and a map of constructor names to their types (Δ ::= ∅ (Δ (D : t ((c : t) ...)))) (D x c ::= variable-not-otherwise-mentioned) #:binding-forms (λ (x : t) e #:refers-to x) (Π (x : t_0) t_1 #:refers-to x)) (define x? (redex-match? ttL x)) (define t? (redex-match? ttL t)) (define e? (redex-match? ttL e)) (define U? (redex-match? ttL U)) (define Δ? (redex-match? ttL Δ)) (module+ test (define-term Type (Unv 0)) (check-true (x? (term T))) (check-true (x? (term A))) (check-true (x? (term truth))) (check-true (x? (term zero))) (check-true (x? (term s))) (check-true (t? (term zero))) (check-true (t? (term s))) (check-true (x? (term nat))) (check-true (t? (term nat))) (check-true (t? (term A))) (check-true (t? (term S))) (check-true (U? (term (Unv 0)))) (check-true (U? (term Type))) (check-true (e? (term (λ (x_0 : (Unv 0)) x_0)))) (check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))) (check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))) ;; TODO: Rename these signatures, and use them in all future tests. (define Δ (term ((∅ (nat : (Unv 0) ((zero : nat) (s : (Π (x : nat) nat))))) (bool : (Unv 0) ((true : bool) (false : bool)))))) (define Δ0 (term ∅)) (define Δ3 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ())))) (define Δ4 (term (∅ (and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ((conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))))) (check-true (Δ? Δ0)) (check-true (Δ? Δ)) (check-true (Δ? Δ4)) (check-true (Δ? Δ3)) (check-true (Δ? Δ4)) (define sigma (term ((((((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())) (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ())) (nat : (Unv 0) ())) (heap : (Unv 0) ())) (pre : (Π (temp808 : heap) (Unv 0)) ())))) (check-true (Δ? (term (∅ (true : (Unv 0) ((T : true))))))) (check-true (Δ? (term (∅ (false : (Unv 0) ()))))) (check-true (Δ? (term (∅ (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))) (check-true (Δ? (term (∅ (nat : (Unv 0) ()))))) (check-true (Δ? (term (∅ (pre : (Π (temp808 : heap) (Unv 0)) ()))))) (check-true (Δ? (term ((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ()))))) (check-true (Δ? (term (((∅ (true : (Unv 0) ((T : true)))) (false : (Unv 0) ())) (equal : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))) ()))))) (check-true (Δ? sigma))) ;;; ------------------------------------------------------------------------ ;;; Universe typing (define-judgment-form ttL #:mode (unv-type I O) #:contract (unv-type U U) [(where i_1 ,(add1 (term i_0))) ----------------- (unv-type (Unv i_0) (Unv i_1))]) ;; Universe predicativity rules. Impredicative in (Unv 0) (define-judgment-form ttL #:mode (unv-pred I I O) #:contract (unv-pred U U U) [---------------- (unv-pred (Unv i) (Unv 0) (Unv 0))] [(where i_3 ,(max (term i_1) (term i_2))) ---------------- (unv-pred (Unv i_1) (Unv i_2) (Unv i_3))]) (define-metafunction ttL α-equivalent? : t t -> #t or #f [(α-equivalent? t_0 t_1) ,(alpha-equivalent? ttL (term t_0) (term t_1))]) (module+ test (default-equiv (lambda (x y) (term (α-equivalent? ,x ,y))))) ;; Replace x by t_1 in t_0 (define-metafunction ttL subst : t x t -> t [(subst t_0 x t_1) (substitute t_0 x t_1)]) (module+ test (check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B)))))) (check-true (term (α-equivalent? (Π (a : S) (Π (b : B) ((and S) B))) (subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))) (define-metafunction ttL subst-all : t (x ...) (e ...) -> t [(subst-all t () ()) t] [(subst-all t (x_0 x ...) (e_0 e ...)) (subst-all (subst t x_0 e_0) (x ...) (e ...))]) ;;; ------------------------------------------------------------------------ ;;; Primitive Operations on signatures Δ (those operations that do not require contexts) ;;; TODO: Might be worth maintaining the above bijection between Δ and maps for performance reasons ;; TODO: This is doing too many things ;; NB: Depends on clause order (define-metafunction ttL Δ-ref-type : Δ x -> t or #f [(Δ-ref-type ∅ x) #f] [(Δ-ref-type (Δ (x : t any)) x) t] [(Δ-ref-type (Δ (x_0 : t_0 ((x_1 : t_1) ... (x : t) (x_2 : t_2) ...))) x) t] [(Δ-ref-type (Δ (x_0 : t_0 any)) x) (Δ-ref-type Δ x)]) (define-metafunction ttL Δ-set : Δ x t ((x : t) ...) -> Δ [(Δ-set Δ x t any) (Δ (x : t any))]) (define-metafunction ttL Δ-union : Δ Δ -> Δ [(Δ-union Δ ∅) Δ] [(Δ-union Δ_2 (Δ_1 (x : t any))) ((Δ-union Δ_2 Δ_1) (x : t any))]) ;; Returns the inductively defined type that x constructs ;; NB: Depends on clause order (define-metafunction ttL Δ-key-by-constructor : Δ x -> x [(Δ-key-by-constructor (Δ (x : t ((x_0 : t_0) ... (x_c : t_c) (x_1 : t_1) ...))) x_c) x] [(Δ-key-by-constructor (Δ (x_1 : t_1 any)) x) (Δ-key-by-constructor Δ x)]) (module+ test (check-equal? (term (Δ-key-by-constructor ,Δ zero)) (term nat)) (check-equal? (term (Δ-key-by-constructor ,Δ s)) (term nat))) ;; Returns the constructor map for the inductively defined type x_D in the signature Δ (define-metafunction ttL Δ-ref-constructor-map : Δ x -> ((x : t) ...) or #f ;; NB: Depends on clause order [(Δ-ref-constructor-map ∅ x_D) #f] [(Δ-ref-constructor-map (Δ (x_D : t_D any)) x_D) any] [(Δ-ref-constructor-map (Δ (x_1 : t_1 any)) x_D) (Δ-ref-constructor-map Δ x_D)]) (module+ test (check-equal? (term (Δ-ref-constructor-map ,Δ nat)) (term ((zero : nat) (s : (Π (x : nat) nat))))) (check-equal? (term (Δ-ref-constructor-map ,sigma false)) (term ()))) ;; TODO: Should not use Δ-ref-type (define-metafunction ttL Δ-ref-constructor-type : Δ x x -> t [(Δ-ref-constructor-type Δ x_D x_ci) (Δ-ref-type Δ x_ci)]) ;; Get the list of constructors for the inducitvely defined type x_D ;; NB: Depends on clause order (define-metafunction ttL Δ-ref-constructors : Δ x -> (x ...) or #f [(Δ-ref-constructors ∅ x_D) #f] [(Δ-ref-constructors (Δ (x_D : t_D ((x : t) ...))) x_D) (x ...)] [(Δ-ref-constructors (Δ (x_1 : t_1 any)) x_D) (Δ-ref-constructors Δ x_D)]) ;; NB: Depends on clause order (define-metafunction ttL sequence-index-of : any (any ...) -> natural [(sequence-index-of any_0 (any_0 any ...)) 0] [(sequence-index-of any_0 (any_1 any ...)) ,(add1 (term (sequence-index-of any_0 (any ...))))]) ;; Get the index of the constructor x_ci in the list of constructors for x_D (define-metafunction ttL Δ-constructor-index : Δ x x -> natural [(Δ-constructor-index Δ x_D x_ci) (sequence-index-of x_ci (Δ-ref-constructors Δ x_D))]) ;;; ------------------------------------------------------------------------ ;;; Operations that involve contexts. (define-extended-language tt-ctxtL ttL ;; Telescope. ;; NB: There is a bijection between this an a vector of maps from x to t (Ξ Φ ::= hole (Π (x : t) Ξ)) ;; Apply context ;; NB: There is a bijection between this an a vector expressions (Θ ::= hole (Θ e))) (define Ξ? (redex-match? tt-ctxtL Ξ)) (define Φ? (redex-match? tt-ctxtL Φ)) (define Θ? (redex-match? tt-ctxtL Θ)) (module+ test ;; Are these telescopes the same when filled with alpha-equivalent, and equivalently renamed, termed (define (telescope-equiv x y) (alpha-equivalent? ttL (term (in-hole ,x (Unv 0))) (term (in-hole ,y (Unv 0))))) (define-syntax-rule (check-telescope-equiv? e1 e2) (check telescope-equiv e1 e2)) (define-syntax-rule (check-telescope-not-equiv? e1 e2) (check (compose not telescope-equiv) e1 e2))) ;; TODO: Might be worth it to actually maintain the above bijections, for performance reasons. ;; Return the parameters of x_D as a telescope Ξ ;; TODO: Define generic traversals of Δ and Γ ? (define-metafunction tt-ctxtL Δ-ref-parameter-Ξ : Δ x -> Ξ [(Δ-ref-parameter-Ξ (Δ (x_D : (in-hole Ξ U) any)) x_D) Ξ] [(Δ-ref-parameter-Ξ (Δ (x_1 : t_1 any)) x_D) (Δ-ref-parameter-Ξ Δ x_D)]) (module+ test (check-telescope-equiv? (term (Δ-ref-parameter-Ξ ,Δ nat)) (term hole)) (check-telescope-equiv? (term (Δ-ref-parameter-Ξ ,Δ4 and)) (term (Π (A : Type) (Π (B : Type) hole))))) ;; Applies the term t to the telescope Ξ. ;; TODO: Test #| TODO: | This essentially eta-expands t at the type-level. Why is this necessary? Shouldn't it be true | that (equivalent t (Ξ-apply Ξ t))? | Maybe not. t is a lambda whose type is equivalent to (Ξ-apply Ξ t)? Yes. |# (define-metafunction tt-ctxtL Ξ-apply : Ξ t -> t [(Ξ-apply hole t) t] [(Ξ-apply (Π (x : t) Ξ) t_0) (Ξ-apply Ξ (t_0 x))]) ;; Compose multiple telescopes into a single telescope: (define-metafunction tt-ctxtL Ξ-compose : Ξ Ξ ... -> Ξ [(Ξ-compose Ξ) Ξ] [(Ξ-compose Ξ_0 Ξ_1 Ξ_rest ...) (Ξ-compose (in-hole Ξ_0 Ξ_1) Ξ_rest ...)]) (module+ test (check-telescope-equiv? (term (Ξ-compose (Π (x : t_0) (Π (y : t_1) hole)) (Π (z : t_2) (Π (a : t_3) hole)))) (term (Π (x : t_0) (Π (y : t_1) (Π (z : t_2) (Π (a : t_3) hole))))))) ;; Compute the number of arguments in a Ξ (define-metafunction tt-ctxtL Ξ-length : Ξ -> natural [(Ξ-length hole) 0] [(Ξ-length (Π (x : t) Ξ)) ,(add1 (term (Ξ-length Ξ)))]) ;; Compute the number of applications in a Θ (define-metafunction tt-ctxtL Θ-length : Θ -> natural [(Θ-length hole) 0] [(Θ-length (Θ e)) ,(add1 (term (Θ-length Θ)))]) ;; Reference an expression in Θ by index; index 0 corresponds to the the expression applied to a hole. (define-metafunction tt-ctxtL Θ-ref : Θ natural -> e or #f [(Θ-ref hole natural) #f] [(Θ-ref (in-hole Θ (hole e)) 0) e] [(Θ-ref (in-hole Θ (hole e)) natural) (Θ-ref Θ ,(sub1 (term natural)))]) ;;; ------------------------------------------------------------------------ ;;; Computing the types of eliminators ;; Returns the telescope of the arguments for the constructor x_ci of the inductively defined type x_D (define-metafunction tt-ctxtL Δ-constructor-telescope : Δ x x -> Ξ [(Δ-constructor-telescope Δ x_D x_ci) Ξ (where (in-hole Ξ (in-hole Θ x_D)) (Δ-ref-constructor-type Δ x_D x_ci))]) ;; Returns the parameter arguments as an apply context of the constructor x_ci of the inductively ;; defined type x_D (define-metafunction tt-ctxtL Δ-constructor-parameters : Δ x x -> Θ [(Δ-constructor-parameters Δ x_D x_ci) Θ (where (in-hole Ξ (in-hole Θ x_D)) (Δ-ref-constructor-type Δ x_D x_ci))]) ;; Inner loop for Δ-constructor-noninductive-telescope (define-metafunction tt-ctxtL noninductive-loop : x Φ -> Φ [(noninductive-loop x_D hole) hole] [(noninductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)) (noninductive-loop x_D Φ_1)] [(noninductive-loop x_D (Π (x : t) Φ_1)) (Π (x : t) (noninductive-loop x_D Φ_1))]) ;; Returns the noninductive arguments to the constructor x_ci of the inductively defined type x_D (define-metafunction tt-ctxtL Δ-constructor-noninductive-telescope : Δ x x -> Ξ [(Δ-constructor-noninductive-telescope Δ x_D x_ci) (noninductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))]) ;; Inner loop for Δ-constructor-inductive-telescope ;; NB: Depends on clause order (define-metafunction tt-ctxtL inductive-loop : x Φ -> Φ [(inductive-loop x_D hole) hole] [(inductive-loop x_D (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1)) (Π (x : (in-hole Φ (in-hole Θ x_D))) (inductive-loop x_D Φ_1))] [(inductive-loop x_D (Π (x : t) Φ_1)) (inductive-loop x_D Φ_1)]) ;; Returns the inductive arguments to the constructor x_ci of the inducitvely defined type x_D (define-metafunction tt-ctxtL Δ-constructor-inductive-telescope : Δ x x -> Ξ [(Δ-constructor-inductive-telescope Δ x_D x_ci) (inductive-loop x_D (Δ-constructor-telescope Δ x_D x_ci))]) ;; Returns the inductive hypotheses required for eliminating the inductively defined type x_D with ;; motive t_P, where the telescope Φ are the inductive arguments to a constructor for x_D (define-metafunction tt-ctxtL hypotheses-loop : x t Φ -> Φ [(hypotheses-loop x_D t_P hole) hole] [(hypotheses-loop x_D t_P (name any_0 (Π (x : (in-hole Φ (in-hole Θ x_D))) Φ_1))) ;; TODO: Instead of this nonsense, it might be simpler to pass in the type of t_P and use that ;; as/to compute the type of the hypothesis. (Π (x_h : (in-hole Φ ((in-hole Θ t_P) (Ξ-apply Φ x)))) (hypotheses-loop x_D t_P Φ_1)) (where x_h ,(variable-not-in (term (x_D t_P any_0)) 'x-ih))]) ;; Returns the inductive hypotheses required for the elimination method of constructor x_ci for ;; inductive type x_D, when eliminating with motive t_P. (define-metafunction tt-ctxtL Δ-constructor-inductive-hypotheses : Δ x x t -> Ξ [(Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P) (hypotheses-loop x_D t_P (Δ-constructor-inductive-telescope Δ x_D x_ci))]) (define-metafunction tt-ctxtL Δ-constructor-method-telescope : Δ x x t -> Ξ [(Δ-constructor-method-telescope Δ x_D x_ci t_P) (Π (x_mi : (in-hole Ξ_a (in-hole Ξ_h ((in-hole Θ_p t_P) (Ξ-apply Ξ_a x_ci))))) hole) (where Θ_p (Δ-constructor-parameters Δ x_D x_ci)) (where Ξ_a (Δ-constructor-telescope Δ x_D x_ci)) (where Ξ_h (Δ-constructor-inductive-hypotheses Δ x_D x_ci t_P)) (where x_mi ,(variable-not-in (term (t_P Δ)) 'x-mi))]) ;; fold Ξ-compose over map Δ-constructor-method-telescope over the list of constructors (define-metafunction tt-ctxtL method-loop : Δ x t (x ...) -> Ξ [(method-loop Δ x_D t_P ()) hole] [(method-loop Δ x_D t_P (x_0 x_rest ...)) (Ξ-compose (Δ-constructor-method-telescope Δ x_D x_0 t_P) (method-loop Δ x_D t_P (x_rest ...)))]) ;; Returns the telescope of all methods required to eliminate the type x_D with motive t_P (define-metafunction tt-ctxtL Δ-methods-telescope : Δ x t -> Ξ [(Δ-methods-telescope Δ x_D t_P) (method-loop Δ x_D t_P (Δ-ref-constructors Δ x_D))]) (module+ test (check-telescope-equiv? (term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat))) (term (Π (m-zero : ((λ (x : nat) nat) zero)) (Π (m-s : (Π (x : nat) (Π (x-ih : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole)))) (check-telescope-equiv? (term (Δ-methods-telescope ,Δ nat P)) (term (Π (m-zero : (P zero)) (Π (m-s : (Π (x : nat) (Π (ih-x : (P x)) (P (s x))))) hole)))) (check-telescope-equiv? (term (Δ-methods-telescope ,Δ nat (λ (x : nat) nat))) (term (Π (m-zero : ((λ (x : nat) nat) zero)) (Π (m-s : (Π (x : nat) (Π (ih-x : ((λ (x : nat) nat) x)) ((λ (x : nat) nat) (s x))))) hole)))) (check-telescope-equiv? (term (Δ-methods-telescope ,Δ4 and (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))))) (term (Π (m-conj : (Π (A : Type) (Π (B : Type) (Π (a : A) (Π (b : B) ((((λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))) A) B) ((((conj A) B) a) b))))))) hole))) (check-true (x? (term false))) (check-true (Ξ? (term hole))) (check-true (t? (term (λ (y : false) (Π (x : Type) x))))) (check-true (redex-match? ttL ((x : t) ...) (term ()))) (check-telescope-equiv? (term (Δ-methods-telescope ,sigma false (λ (y : false) (Π (x : Type) x)))) (term hole))) ;; Computes the type of the eliminator for the inductively defined type x_D with a motive whose result ;; is in universe U. ;; ;; The type of (elim x_D U) is something like: ;; (∀ (P : (∀ a -> ... -> (D a ...) -> U)) ;; (method_ci ...) -> ... -> ;; (a -> ... -> (D a ...) -> ;; (P a ... (D a ...)))) ;; ;; x_D is an inductively defined type ;; U is the sort the motive ;; x_P is the name of the motive ;; Ξ_P*D is the telescope of the parameters of x_D and ;; the witness of type x_D (applied to the parameters) ;; Ξ_m is the telescope of the methods for x_D (define-metafunction tt-ctxtL Δ-elim-type : Δ x U -> t [(Δ-elim-type Δ x_D U) (Π (x_P : (in-hole Ξ_P*D U)) ;; The methods Ξ_m for each constructor of type x_D (in-hole Ξ_m ;; And finally, the parameters and discriminant (in-hole Ξ_P*D ;; The result is (P a ... (x_D a ...)), i.e., the motive ;; applied to the paramters and discriminant (Ξ-apply Ξ_P*D x_P)))) ;; Get the parameters of x_D (where Ξ (Δ-ref-parameter-Ξ Δ x_D)) ;; A fresh name to bind the discriminant (where x ,(variable-not-in (term (Δ Γ x_D Ξ)) 'x-D)) ;; The telescope (∀ a -> ... -> (D a ...) hole), i.e., ;; of the parameters and the inductive type applied to the ;; parameters (where Ξ_P*D (in-hole Ξ (Π (x : (Ξ-apply Ξ x_D)) hole))) ;; A fresh name for the motive (where x_P ,(variable-not-in (term (Δ Γ x_D Ξ Ξ_P*D x)) 'x-P)) ;; The types of the methods for this inductive. (where Ξ_m (Δ-methods-telescope Δ x_D x_P))]) ;; TODO: This might belong in the next section, since it's related to evaluation ;; Generate recursive applications of the eliminator for each inductive argument of type x_D. ;; In more detaill, given motive t_P, parameters Θ_p, methods Θ_m, and arguments Θ_i to constructor ;; x_ci for x_D, for each inductively smaller term t_i of type (in-hole Θ_p x_D) inside Θ_i, ;; generate: (elim x_D U t_P Θ_m ... Θ_p ... t_i) (define-metafunction tt-ctxtL Δ-inductive-elim : Δ x U t Θ Θ Θ -> Θ [(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m (in-hole Θ_i (hole (name t_i (in-hole Θ_r x_ci))))) ((Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_i) (in-hole ((in-hole Θ_p Θ_m) t_i) ((elim x_D U) t_P))) (side-condition (memq (term x_ci) (term (Δ-ref-constructors Δ x_D))))] [(Δ-inductive-elim Δ x_D U t_P Θ_p Θ_m Θ_nr) hole]) ;; TODO: Insufficient tests, no tests of inductives with parameters, or complex induction. (module+ test (check-true (redex-match? tt-ctxtL (in-hole Θ_i (hole (in-hole Θ_r zero))) (term (hole zero)))) (check-telescope-equiv? (term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) (hole zero))) (term (hole (((((elim nat Type) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero)))) (check-telescope-equiv? (term (Δ-inductive-elim ,Δ nat Type (λ (x : nat) nat) hole ((hole (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) (hole (s zero)))) (term (hole (((((elim nat Type) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) (s zero)))))) ;;; ------------------------------------------------------------------------ ;;; Dynamic semantics ;;; The majority of this section is dedicated to evaluation of (elim x U), the eliminator for the ;;; inductively defined type x with a motive whose result is in universe U (define-extended-language tt-redL tt-ctxtL ;; NB: (in-hole Θv (elim x U)) is only a value when it's a partially applied elim. However, ;; determining whether or not it is partially applied cannot be done with the grammar alone. (v ::= x U (Π (x : t) t) (λ (x : t) t) (elim x U) (in-hole Θv x) (in-hole Θv (elim x U))) (Θv ::= hole (Θv v)) ;; call-by-value, plus reduce under Π (helps with typing checking) (E ::= hole (E e) (v E) (Π (x : v) E) (Π (x : E) e))) (define Θv? (redex-match? tt-redL Θv)) (define E? (redex-match? tt-redL E)) (define v? (redex-match? tt-redL v)) (module+ test (check-true (v? (term (λ (x_0 : (Unv 0)) x_0)))) (check-true (v? (term (refl Nat)))) (check-true (v? (term ((refl Nat) z))))) (define tt--> (reduction-relation tt-redL (--> (Δ (in-hole E ((λ (x : t_0) t_1) t_2))) (Δ (in-hole E (subst t_1 x t_2))) -->β) (--> (Δ (in-hole E (in-hole Θv ((elim x_D U) v_P)))) (Δ (in-hole E (in-hole Θ_r (in-hole Θv_i v_mi)))) #| | The elim form must appear applied like so: | (elim x_D U v_P m_0 ... m_i m_j ... m_n p ... (c_i a ...)) | | Where: | x_D is the inductive being eliminated | U is the universe of the result of the motive | v_P is the motive | m_{0..n} are the methods | p ... are the parameters of x_D | c_i is a constructor of x_d | a ... are the arguments to c_i | Unfortunately, Θ contexts turn all this inside out: | TODO: Write better abstractions for this notation |# ;; Split Θv into its components: the paramters Θv_P for x_D, the methods Θv_m for x_D, and ;; the discriminant: the constructor x_ci applied to its argument Θv_i (where (in-hole (Θv_p (in-hole Θv_i x_ci)) Θv_m) Θv) ;; Check that Θ_p actually matches the parameters of x_D, to ensure it doesn't capture other ;; arguments. (side-condition (equal? (term (Θ-length Θv_p)) (term (Ξ-length (Δ-ref-parameter-Ξ Δ x_D))))) ;; Ensure x_ci is actually a constructor for x_D (where (x_c* ...) (Δ-ref-constructors Δ x_D)) (side-condition (memq (term x_ci) (term (x_c* ...)))) ;; There should be a number of methods equal to the number of constructors; to ensure E ;; doesn't capture methods and Θv_m doesn't capture other arguments (side-condition (equal? (length (term (x_c* ...))) (term (Θ-length Θv_m)))) ;; Find the method for constructor x_ci, relying on the order of the arguments. (where v_mi (Θ-ref Θv_m (Δ-constructor-index Δ x_D x_ci))) ;; Generate the inductive recursion (where Θ_r (Δ-inductive-elim Δ x_D U v_P Θv_p Θv_m Θv_i)) -->elim))) (define-metafunction tt-redL step : Δ e -> e [(step Δ e) e_r (where (_ e_r) ,(car (apply-reduction-relation tt--> (term (Δ e)))))]) (define-metafunction tt-redL reduce : Δ e -> e [(reduce Δ e) e_r (where (_ e_r) ,(let ([r (apply-reduction-relation* tt--> (term (Δ e)) #:cache-all? #t)]) ;; Efficient check for (= (length r) 1) ;; NB: Check is overly aggressive and produces wrong error, ;; because not reducing under lambda. #;(unless (null? (cdr r)) (error "Church-Rosser broken" r)) (car r)))]) ;; TODO: Move equivalence up here, and use in these tests. (module+ test (check-equiv? (term (reduce ∅ (Unv 0))) (term (Unv 0))) (check-equiv? (term (reduce ∅ ((λ (x : t) x) (Unv 0)))) (term (Unv 0))) (check-not-equiv? (term (reduce ∅ ((Π (x : t) x) (Unv 0)))) (term (Unv 0))) (check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0))))) (term (Π (x : t) (Unv 0)))) (check-not-equiv? (term (reduce ∅ (Π (x : t) ((Π (x_0 : t) (x_0 x)) x)))) (term (Π (x : t) (x x)))) (check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero))) (term (s zero))) (check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) (s zero)))) (term (s (s zero)))) (check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) (s (s (s zero)))))) (term (s (s (s (s zero)))))) (check-equiv? (term (reduce ,Δ (((((elim nat Type) (λ (x : nat) nat)) (s (s zero))) (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) (s (s zero))))) (term (s (s (s (s zero)))))) (check-equiv? (term (step ,Δ (((((elim nat Type) (λ (x : nat) nat)) (s (s zero))) (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) (s (s zero))))) (term (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) (s zero)) (((((elim nat Type) (λ (x : nat) nat)) (s (s zero))) (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) (s zero))))) (check-equiv? (term (step ,Δ (step ,Δ (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) (s zero)) (((((elim nat Type) (λ (x : nat) nat)) (s (s zero))) (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) (s zero)))))) (term ((λ (ih-x1 : nat) (s ih-x1)) (((λ (x : nat) (λ (ih-x : nat) (s ih-x))) zero) (((((elim nat Type) (λ (x : nat) nat)) (s (s zero))) (λ (x : nat) (λ (ih-x : nat) (s ih-x)))) zero)))))) (define-judgment-form tt-redL #:mode (equivalent I I I) #:contract (equivalent Δ t t) [(where t_2 (reduce Δ t_0)) (where t_3 (reduce Δ t_1)) (side-condition (α-equivalent? t_2 t_3)) ----------------- "≡-αβ" (equivalent Δ t_0 t_1)]) (module+ test (define-syntax-rule (check-equivalent e1 e2) (check-holds (equivalent ∅ e1 e2))) (check-equivalent (λ (x : Type) x) (λ (y : Type) y)) (check-equivalent (Π (x : Type) x) (Π (y : Type) y))) ;;; ------------------------------------------------------------------------ ;;; Type checking and synthesis (define-extended-language tt-typingL tt-redL ;; NB: There may be a bijection between Γ and Ξ. That's interesting. ;; NB: Also a bijection between Γ and a list of maps from x to t. (Γ ::= ∅ (Γ x : t))) (define Γ? (redex-match? tt-typingL Γ)) (define-metafunction tt-typingL Γ-union : Γ Γ -> Γ [(Γ-union Γ ∅) Γ] [(Γ-union Γ_2 (Γ_1 x : t)) ((Γ-union Γ_2 Γ_1) x : t)]) (define-metafunction tt-typingL Γ-set : Γ x t -> Γ [(Γ-set Γ x t) (Γ x : t)]) ;; NB: Depends on clause order (define-metafunction tt-typingL Γ-ref : Γ x -> t or #f [(Γ-ref ∅ x) #f] [(Γ-ref (Γ x : t) x) t] [(Γ-ref (Γ x_0 : t_0) x_1) (Γ-ref Γ x_1)]) ;; NB: Depends on clause order (define-metafunction tt-typingL Γ-remove : Γ x -> Γ [(Γ-remove ∅ x) ∅] [(Γ-remove (Γ x : t) x) Γ] [(Γ-remove (Γ x_0 : t_0) x_1) (Γ-remove Γ x_1)]) (define-metafunction tt-typingL nonpositive : x t -> #t or #f [(nonpositive x (in-hole Θ x)) #t] [(nonpositive x (Π (x_0 : (in-hole Θ x)) t)) #f] [(nonpositive x (Π (x_0 : t_0) t)) ,(and (term (positive x t_0)) (term (nonpositive x t)))] [(nonpositive x t) #t]) (define-metafunction tt-typingL positive : x t -> #t or #f [(positive x (in-hole Θ x)) #f] [(positive x (Π (x_0 : (in-hole Θ x)) t)) (positive x t)] [(positive x (Π (x_0 : t_0) t)) ,(and (term (nonpositive x t_0)) (term (positive x t)))] [(positive x t) #t]) (define-metafunction tt-typingL positive* : x (t ...) -> #t or #f [(positive* x_D ()) #t] [(positive* x_D (t_c t_rest ...)) ;; Replace the result of the constructor with (Unv 0), to avoid the result being considered a ;; nonpositive position. ,(and (term (positive x_D (in-hole Ξ (Unv 0)))) (term (positive* x_D (t_rest ...)))) (where (in-hole Ξ (in-hole Θ x_D)) t_c)]) ;; NB: These tests may or may not fail because positivity checking is not implemented. (module+ test (check-true (term (positive* nat (nat)))) (check-true (term (positive* nat ((Π (x : (Unv 0)) (Π (y : (Unv 0)) nat)))))) (check-true (term (positive* nat ((Π (x : nat) nat))))) ;; (nat -> nat) -> nat ;; Not sure if this is actually supposed to pass (check-false (term (positive* nat ((Π (x : (Π (y : nat) nat)) nat))))) ;; ((Unv 0) -> nat) -> nat (check-true (term (positive* nat ((Π (x : (Π (y : (Unv 0)) nat)) nat))))) ;; (((nat -> (Unv 0)) -> nat) -> nat) (check-true (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat))))) ;; Not sure if this is actually supposed to pass ;; ((nat -> nat) -> nat) -> nat (check-false (term (positive* nat ((Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat)))))) ;; Holds when the signature Δ and typing context Γ are well-formed. (define-judgment-form tt-typingL #:mode (wf I I) #:contract (wf Δ Γ) [----------------- "WF-Empty" (wf ∅ ∅)] [(type-infer Δ Γ t t_0) (wf Δ Γ) ----------------- "WF-Var" (wf Δ (Γ x : t))] [(wf Δ ∅) (type-infer Δ ∅ t_D U_D) (type-infer Δ (∅ x_D : t_D) t_c U_c) ... ;; NB: Ugh this should be possible with pattern matching alone .... (side-condition ,(map (curry equal? (term x_D)) (term (x_D* ...)))) (side-condition (positive* x_D (t_c ...))) ----------------- "WF-Inductive" (wf (Δ (x_D : t_D ;; Checks that a constructor for x actually produces an x, i.e., that ;; the constructor is well-formed. ((x_c : (name t_c (in-hole Ξ (in-hole Θ x_D*)))) ...))) ∅)]) (module+ test (check-true (judgment-holds (wf ,Δ0 ∅))) (check-true (redex-match? tt-redL (in-hole Ξ (Unv 0)) (term (Unv 0)))) (check-true (redex-match? tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat))) (term (Π (x : nat) nat)))) (define (bindings-equal? l1 l2) (map set=? l1 l2)) (check-pred (curry bindings-equal? (list (list (make-bind 'Ξ (term (Π (x : nat) hole))) (make-bind 'Φ (term hole)) (make-bind 'Θ (term hole))) (list (make-bind 'Ξ (term hole)) (make-bind 'Φ (term (Π (x : nat) hole))) (make-bind 'Θ (term hole))))) (map match-bindings (redex-match tt-redL (in-hole Ξ (in-hole Φ (in-hole Θ nat))) (term (Π (x : nat) nat))))) (check-pred (curry bindings-equal? (list (list (make-bind 'Φ (term (Π (x : nat) hole))) (make-bind 'Θ (term hole))))) (map match-bindings (redex-match tt-redL (in-hole hole (in-hole Φ (in-hole Θ nat))) (term (Π (x : nat) nat))))) (check-true (redex-match? tt-redL (in-hole hole (in-hole hole (in-hole hole nat))) (term nat))) (check-true (redex-match? tt-redL (in-hole hole (in-hole (Π (x : nat) hole) (in-hole hole nat))) (term (Π (x : nat) nat)))) (check-holds (wf (∅ (nat : (Unv 0) ())) ∅)) (check-holds (wf ,Δ0 ∅)) (check-holds (type-infer ∅ ∅ (Unv 0) U)) (check-holds (type-infer ∅ (∅ nat : (Unv 0)) nat U)) (check-holds (type-infer ∅ (∅ nat : (Unv 0)) (Π (x : nat) nat) U)) (check-true (term (positive* nat (nat (Π (x : nat) nat))))) (check-holds (wf (∅ (nat : (Unv 0) ((zero : nat)))) ∅)) (check-holds (wf (∅ (nat : (Unv 0) ((s : (Π (x : nat) nat))))) ∅)) (check-holds (wf ,Δ ∅)) (check-holds (wf ,Δ3 ∅)) (check-holds (wf ,Δ4 ∅)) (check-holds (wf (∅ (truth : (Unv 0) ())) ∅)) (check-holds (wf ∅ (∅ x : (Unv 0)))) (check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : nat))) (check-holds (wf (∅ (nat : (Unv 0) ())) (∅ x : (Π (x : nat) nat))))) ;; TODO: Bi-directional and inference? ;; TODO: http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf ;; Holds when e has type t under signature Δ and typing context Γ (define-judgment-form tt-typingL #:mode (type-infer I I I O) #:contract (type-infer Δ Γ e t) [(wf Δ Γ) (unv-type U_0 U_1) ----------------- "DTR-Unv" (type-infer Δ Γ U_0 U_1)] [(where t (Δ-ref-type Δ x)) ----------------- "DTR-Inductive" (type-infer Δ Γ x t)] [(where t (Γ-ref Γ x)) ----------------- "DTR-Start" (type-infer Δ Γ x t)] [(type-infer Δ (Γ x : t_0) e t_1) (type-infer Δ Γ (Π (x : t_0) t_1) U) ----------------- "DTR-Abstraction" (type-infer Δ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))] [(type-infer Δ Γ t_0 U_1) (type-infer Δ (Γ x : t_0) t U_2) (unv-pred U_1 U_2 U) ----------------- "DTR-Product" (type-infer Δ Γ (Π (x : t_0) t) U)] [(type-infer Δ Γ e_0 t) ;; Cannot rely on type-infer producing normal forms. (where (Π (x_0 : t_0) t_1) (reduce Δ t)) (type-check Δ Γ e_1 t_0) (where t_3 (subst t_1 x_0 e_1)) ----------------- "DTR-Application" (type-infer Δ Γ (e_0 e_1) t_3)] [(where t (Δ-elim-type Δ D U)) (type-infer Δ Γ t U_e) ----------------- "DTR-Elim_D" (type-infer Δ Γ (elim D U) t)]) (define-judgment-form tt-typingL #:mode (type-check I I I I) #:contract (type-check Δ Γ e t) [(type-infer Δ Γ e t_0) (equivalent Δ t t_0) ----------------- "DTR-Check" (type-check Δ Γ e t)]) (module+ test (check-holds (type-infer ∅ ∅ (Unv 0) (Unv 1))) (check-holds (type-infer ∅ (∅ x : (Unv 0)) (Unv 0) (Unv 1))) (check-holds (type-infer ∅ (∅ x : (Unv 0)) x (Unv 0))) (check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_1 : (Unv 0)) (Π (x_3 : x_0) x_1) (Unv 0))) (check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) x_0 U_1)) (check-holds (type-infer ∅ ((∅ x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2)) (check-holds (unv-pred (Unv 0) (Unv 0) (Unv 0))) (check-holds (type-infer ∅ (∅ x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t)) (check-holds (type-check ∅ ∅ (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0)))) (check-holds (type-check ∅ ∅ (λ (y : (Unv 0)) (λ (x : y) x)) (Π (y : (Unv 0)) (Π (x : y) y)))) (check-equal? (list (term (Unv 1))) (judgment-holds (type-infer ∅ ((∅ x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))) U) U)) ;; ---- Elim ;; TODO: Clean up/Reorganize these tests (check-true (redex-match? tt-typingL (in-hole Θ_m (((elim x_D U) e_D) e_P)) (term ((((elim truth Type) T) (Π (x : truth) (Unv 1))) (Unv 0))))) (define Δtruth (term (∅ (truth : (Unv 0) ((T : truth)))))) (check-holds (type-infer ,Δtruth ∅ truth (in-hole Ξ U))) (check-holds (type-infer ,Δtruth ∅ T (in-hole Θ_ai truth))) (check-holds (type-infer ,Δtruth ∅ (λ (x : truth) (Unv 1)) (in-hole Ξ (Π (x : (in-hole Θ truth)) U)))) (check-telescope-equiv? (term (Δ-methods-telescope ,Δtruth truth (λ (x : truth) (Unv 1)))) (term (Π (m-T : ((λ (x : truth) (Unv 1)) T)) hole))) (check-holds (type-infer ,Δtruth ∅ (elim truth Type) t)) (check-holds (type-check (∅ (truth : (Unv 0) ((T : truth)))) ∅ ((((elim truth (Unv 2)) (λ (x : truth) (Unv 1))) (Unv 0)) T) (Unv 1))) (check-not-holds (type-check (∅ (truth : (Unv 0) ((T : truth)))) ∅ ((((elim truth (Unv 1)) Type) Type) T) (Unv 1))) (check-holds (type-infer ∅ ∅ (Π (x2 : (Unv 0)) (Unv 0)) U)) (check-holds (type-infer ∅ (∅ x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))) t)) (check-holds (type-infer ,Δ ∅ nat (in-hole Ξ U))) (check-holds (type-infer ,Δ ∅ zero (in-hole Θ_ai nat))) (check-holds (type-infer ,Δ ∅ (λ (x : nat) nat) (in-hole Ξ (Π (x : (in-hole Θ nat)) U)))) (define-syntax-rule (nat-test syn ...) (check-holds (type-check ,Δ syn ...))) (nat-test ∅ (Π (x : nat) nat) (Unv 0)) (nat-test ∅ (λ (x : nat) x) (Π (x : nat) nat)) (nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) zero) nat) (nat-test ∅ nat (Unv 0)) (nat-test ∅ zero nat) (nat-test ∅ s (Π (x : nat) nat)) (nat-test ∅ (s zero) nat) ;; TODO: Meta-function auto-currying and such (check-holds (type-infer ,Δ ∅ ((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) t)) (nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) zero) nat) (nat-test ∅ (((((elim nat (Unv 0)) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero) nat) (nat-test ∅ (((((elim nat Type) (λ (x : nat) nat)) (s zero)) (λ (x : nat) (λ (ih-x : nat) (s (s x))))) zero) nat) (nat-test (∅ n : nat) (((((elim nat (Unv 0)) (λ (x : nat) nat)) zero) (λ (x : nat) (λ (ih-x : nat) x))) n) nat) (check-holds (type-check (,Δ (bool : (Unv 0) ((btrue : bool) (bfalse : bool)))) (∅ n2 : nat) (((((elim nat (Unv 0)) (λ (x : nat) bool)) btrue) (λ (x : nat) (λ (ih-x : bool) bfalse))) n2) bool)) (check-not-holds (type-check ,Δ ∅ ((((elim nat (Unv 0)) nat) (s zero)) zero) nat)) (define lam (term (λ (nat : (Unv 0)) nat))) (check-equivalent (Π (nat : (Unv 0)) (Unv 0)) ,(car (judgment-holds (type-infer ,Δ0 ∅ ,lam t) t))) (check-equivalent (Π (nat : (Unv 0)) (Unv 0)) ,(car (judgment-holds (type-infer ,Δ ∅ ,lam t) t))) (check-equivalent (Π (x : (Π (y : (Unv 0)) y)) nat) ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (x : (Π (y : (Unv 0)) y)) (x nat)) t) t))) (check-equivalent (Π (y : (Unv 0)) (Unv 0)) ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ (λ (y : (Unv 0)) y) t) t))) (check-equivalent (Unv 0) ,(car (judgment-holds (type-infer (∅ (nat : (Unv 0) ())) ∅ ((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat)) (λ (y : (Unv 0)) y)) t) t))) (check-equal? (list (term (Unv 0)) (term (Unv 1))) (judgment-holds (type-infer ,Δ4 ∅ (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))) U) U)) (check-holds (type-check ,Δ4 (∅ S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))) (check-holds (type-check ,Δ4 (∅ S : (Unv 0)) conj (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : P) (Π (y : Q) ((and P) Q))))))) (check-holds (type-check ,Δ4 (∅ S : (Unv 0)) S (Unv 0))) (check-holds (type-check ,Δ4 (∅ S : (Unv 0)) (conj S) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))) (check-holds (type-check ,Δ4 (∅ S : (Unv 0)) (conj S) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))) (check-holds (type-check ,Δ4 ∅ (λ (S : (Unv 0)) (conj S)) (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))) (check-holds (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ ((((conj true) true) tt) tt) ((and true) true))) (check-holds (type-infer ,Δ4 ∅ and (in-hole Ξ U_D))) (check-holds (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ ((((conj true) true) tt) tt) (in-hole Θ and))) (check-holds (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true))) (in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P)))) (check-holds (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ ((((((elim and (Unv 0)) (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) true)))) (λ (A : (Unv 0)) (λ (B : (Unv 0)) (λ (a : A) (λ (b : B) tt))))) true) true) ((((conj true) true) tt) tt)) true)) (check-true (Γ? (term (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q))))) (check-holds (type-infer ,Δ4 ∅ and (in-hole Ξ U))) (check-holds (type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q)) ab (in-hole Θ and))) (check-true (redex-match? tt-redL (in-hole Ξ (Π (x : (in-hole Θ and)) U)) (term (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0))))))) (check-holds (type-infer ,Δ4 (((∅ P : Type) Q : Type) ab : ((and P) Q)) (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A)))) (in-hole Ξ (Π (x : (in-hole Θ and)) U)))) (check-holds (equivalent ,Δ4 (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))) (Π (P : (Unv 0)) (Π (Q : (Unv 0)) (Π (x : ((and P) Q)) (Unv 0)))))) (check-holds (type-infer ,Δ4 ∅ (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A)))) (in-hole Ξ (Π (x : (in-hole Θ_Ξ and)) U_P)))) (check-holds (type-check ,Δ4 (((∅ P : (Unv 0)) Q : (Unv 0)) ab : ((and P) Q)) ((((((elim and (Unv 0)) (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A))))) (λ (A : (Unv 0)) (λ (B : (Unv 0)) (λ (a : A) (λ (b : B) ((((conj B) A) b) a)))))) P) Q) ab) ((and Q) P))) (check-holds (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A)))) (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (x : ((and A) B)) (Unv 0)))))) (check-holds (type-infer (,Δ4 (true : (Unv 0) ((tt : true)))) ((∅ A : Type) B : Type) (conj B) t)) (check-holds (type-check (,Δ4 (true : (Unv 0) ((tt : true)))) ∅ ((((((elim and (Unv 0)) (λ (A : Type) (λ (B : Type) (λ (x : ((and A) B)) ((and B) A))))) (λ (A : (Unv 0)) (λ (B : (Unv 0)) (λ (a : A) (λ (b : B) ((((conj B) A) b) a)))))) true) true) ((((conj true) true) tt) tt)) ((and true) true))) (define gamma (term (∅ temp863 : pre))) (check-holds (wf ,sigma ∅)) (check-holds (wf ,sigma ,gamma)) (check-holds (type-infer ,sigma ,gamma (Unv 0) t)) (check-holds (type-infer ,sigma ,gamma pre t)) (check-holds (type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))) (check-holds (type-infer ,sigma ,gamma pre t)) (check-holds (type-check ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1))) (check-holds (type-infer ,sigma (,gamma x : false) false (in-hole Ξ U_D))) (check-holds (type-infer ,sigma (,gamma x : false) x (in-hole Θ false))) (check-holds (type-infer ,sigma (,gamma x : false) (λ (y : false) (Π (x : Type) x)) (in-hole Ξ (Π (x : (in-hole Θ false)) U)))) (check-true (redex-match? tt-typingL ((in-hole Θ_m ((elim x_D U) e_P)) e_D) (term (((elim false (Unv 1)) (λ (y : false) (Π (x : Type) x))) x)))) (check-holds (type-check ,sigma (,gamma x : false) (((elim false (Unv 0)) (λ (y : false) (Π (x : Type) x))) x) (Π (x : (Unv 0)) x))) ;; nat-equal? tests (define zero? (term ((((elim nat Type) (λ (x : nat) bool)) true) (λ (x : nat) (λ (x_ih : bool) false))))) (check-holds (type-check ,Δ ∅ ,zero? (Π (x : nat) bool))) (check-equal? (term (reduce ,Δ (,zero? zero))) (term true)) (check-equal? (term (reduce ,Δ (,zero? (s zero)))) (term false)) (define ih-equal? (term ((((elim nat Type) (λ (x : nat) bool)) false) (λ (x : nat) (λ (y : bool) (x_ih x)))))) (check-holds (type-check ,Δ (∅ x_ih : (Π (x : nat) bool)) ,ih-equal? (Π (x : nat) bool))) (check-holds (type-infer ,Δ ∅ nat (Unv 0))) (check-holds (type-infer ,Δ ∅ bool (Unv 0))) (check-holds (type-infer ,Δ ∅ (λ (x : nat) (Π (x : nat) bool)) (Π (x : nat) (Unv 0)))) (define nat-equal? (term ((((elim nat Type) (λ (x : nat) (Π (x : nat) bool))) ,zero?) (λ (x : nat) (λ (x_ih : (Π (x : nat) bool)) ,ih-equal?))))) (check-holds (type-check ,Δ (∅ nat-equal? : (Π (x-D«4158» : nat) ((λ (x«4159» : nat) (Π (x«4160» : nat) bool)) x-D«4158»))) ((nat-equal? zero) zero) bool)) (check-holds (type-check ,Δ ∅ ,nat-equal? (Π (x : nat) (Π (y : nat) bool)))) (check-equal? (term (reduce ,Δ ((,nat-equal? zero) (s zero)))) (term false)) (check-equal? (term (reduce ,Δ ((,nat-equal? (s zero)) zero))) (term false)) ;; == tests (define Δ= (term (,Δ (== : (Π (A : (Unv 0)) (Π (a : A) (Π (b : A) (Unv 0)))) ((refl : (Π (A : (Unv 0)) (Π (a : A) (((== A) a) a))))))))) (check-true (Δ? Δ=)) (define refl-elim (term (((((((elim == (Unv 0)) (λ (A1 : (Unv 0)) (λ (x1 : A1) (λ (y1 : A1) (λ (p2 : (((== A1) x1) y1)) nat))))) (λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true)))) (check-holds (type-check ,Δ= ∅ ,refl-elim nat)) (check-true (redex-match? tt-redL (Δ (in-hole E (in-hole Θ ((elim x_D U) e_P)))) (term (,Δ= ,refl-elim)))) (check-true (redex-match? tt-redL (in-hole (Θ_p (in-hole Θ_i x_ci)) Θ_m) (term (((((hole (λ (A1 : (Unv 0)) (λ (x1 : A1) zero))) bool) true) true) ((refl bool) true))))) (check-telescope-equiv? (term (Δ-ref-parameter-Ξ ,Δ= ==)) (term (Π (A : Type) (Π (a : A) (Π (b : A) hole))))) (check-equal? (term (reduce ,Δ= ,refl-elim)) (term zero)))