cur/proofs-for-free-v2.rkt
2015-01-29 22:44:30 -05:00

170 lines
5.5 KiB
Racket

#lang s-exp "redex-curnel.rkt"
;; Ignore this file.
(require rackunit racket/trace (for-syntax racket/syntax))
;; TODO: Move to standard library
(define-syntax (-> syn)
(syntax-case syn ()
[(_ t1 t2)
(with-syntax ([(x) (generate-temporaries '(1))])
#'(forall (x : t1) t2))]))
(define-syntax ->*
(syntax-rules ()
[(->* a) a]
[(->* a a* ...)
(-> a (->* a* ...))]))
(define-syntax forall*
(syntax-rules (:)
[(_ (a : t) (ar : tr) ... b)
(forall (a : t)
(forall* (ar : tr) ... b))]
[(_ b) b]))
(define-syntax lambda*
(syntax-rules (:)
[(_ (a : t) (ar : tr) ... b)
(lambda (a : t)
(lambda* (ar : tr) ... b))]
[(_ b) b]))
(define-syntax-rule (define-theorem name prop)
(define (name (x : prop)) T))
(define-syntax-rule (qed thm pf)
(check-equal? T (thm pf)))
(define-syntax (define-type syn)
(syntax-case syn (:)
[(_ (name (x : t) ...) e)
#'(define name (forall* (x : t) ... e))]
[(_ id e)
#'(define id e)]))
;; ---------
(data true : Type (T : true))
(data false : Type)
(data equal : (forall* (A : Type) (B : Type) Type))
(data * : (forall* (a : Type) (b : Type) Type)
(prod : (forall* (a : Type) (b : Type) (* a b))))
;; ---------
(begin-for-syntax
(define (rename_id i x)
(format-id x "~a~a" x i)))
(define-syntax (rename syn)
(syntax-case syn (Type forall Unv lambda :)
[(_ i ls Type) #'Type]
[(_ i ls (Unv n)) #'(Unv n)]
[(_ i (xr ...) (lambda (x : t) e))
#'(lambda (x : (rename i (xr ...) t))
(rename i (xr ... x) e))]
[(_ i (xr ...) (forall (x : t) e))
#'(forall (x : (rename i (xr ...) t))
(rename i (xr ... x) e))]
[(_ i ls (e1 e2))
#'((rename i ls e1) (rename i ls e2))]
[(_ i ls x)
(if (member (syntax->datum #'x) (syntax->datum #'ls))
#'x
(rename_id (syntax->datum #'i) #'x))]))
(define-syntax (translate syn)
(syntax-case syn (_t _v Type forall Unv lambda : data)
[(_ _t Type)
#'(lambda* (x1 : Type) (x2 : Type) (->* x1 x2 Type))]
[(_ _v Type)
#'(lambda* (x1 : Type) (x2 : Type) (equal x1 x2))]
[(_ e (forall (x : A) B))
(let ([x1 (rename_id 1 #'x)]
[x2 (rename_id 2 #'x)]
[xr (rename_id 'r #'x)])
#`(lambda* (f1 : (rename 1 () (forall (x : A) B)))
(f2 : (rename 2 () (forall (x : A) B)))
(forall* (#,x1 : (rename 1 () A)) (#,x2 : (rename 2 () A))
(#,xr : ((translate _t A) #,x1 #,x2))
((translate e B) (f1 #,x1) (f2 #,x2)))))]
[(_ e (lambda (x : A) B))
(let ([x1 (rename_id 1 #'x)]
[x2 (rename_id 2 #'x)]
[xr (rename_id 'r #'x)])
#`(lambda* (f1 : (rename 1 () (forall (x : A) B)))
(f2 : (rename 2 () (forall (x : A) B)))
(forall* (#,x1 : (rename 1 () A))
(#,x2 : (rename 2 () A))
(#,xr : ((translate _t A) #,x1 #,x2))
((translate e B) (f1 #,x1) (f2 #,x2)))))]
[(_ e (data id : t (c : tc) ...))
(let ([t #`(data #,(rename_id 'r #'id) : (translate e t)
((translate e c) : (translate e tc)) ...) ])
t)]
[(_ e (f a))
#`((translate e f) (rename 1 () a) (rename 2 () a) (translate e a))]
[(_ e x)
;; Not sure this is quite right; Racket's hygiene might `save' me.
(rename_id 'r #'x)]
[_ (raise-syntax-error "translate undefined for" syn)]))
(define-theorem thm:type_t ((translate _t Type) Type Type))
(qed thm:type_t (translate _v Type))
(translate _v Type)
((translate _t Type) Type Type)
((translate _v Type) true false)
#;(define true1 true)
#;(define true2 true)
(data nat : Type
(z : nat)
(s : (-> nat nat)))
(define nat1 nat)
(define nat2 nat)
(define natr (lambda* (n1 : nat) (n2 : nat) true))
(data heap : Type)
(define heap1 heap)
(define heap2 heap)
(data heap-equal : (forall* (h1 : heap) (h2 : heap) Type))
(define heapr natr)
(define-type (pre (h : heap)) Type)
(define pre1 pre)
(define pre2 pre)
(define prer (translate _v (forall (h : heap) Type)))
prer
(define-type (monad (s : pre)
(tp : (-> pre Type))
(unit : (forall (x : nat) (tp (lambda (h : heap) true)))))
(-> heap (tp s)))
#;(define monad-type
(forall (s : pre)
(forall (tp : (forall (p : pre) Type))
(forall (unit : (forall (x : nat) (tp (lambda (h : heap)
true))))
(forall (h : heap) (tp s))))))
;monad-type
#;(translate _v (forall (s : pre)
(forall (tp : (forall (p : pre) Type))
(forall (unit : (forall (x : nat) (tp (lambda (h : heap) true))))
(forall (h : heap) (tp s))))))
;; and : (forall (A : Type) (B : Type) Type)
(data and : (forall* (A : Type) (B : Type) Type)
(conj : (forall* (A : Type) (B : Type) (a : A) (b : B) (and A B))))
((translate _v (forall (A : Type) (forall (B : Type) Type))) and and)
;; conj : (forall (A : Type) (B : Type) (a : A) (b : B) (and A B))
((translate _v (forall (A : Type) (forall (B : Type)
(forall (a : A) (forall (b :
B)
((and
A)
B))))))
conj conj)
(translate _v T)
((translate _v true) T T)
((translate _v Type) true true)