cur/stdlib/prop.rkt
William J. Bowman 024f4e188e
Fixed reduction of (elim ==)
Fixed eliminator reduction, at least for the == type. Code currently
does the minimum required to make #23 work, but may have introduced bugs
in the process.
2015-09-26 00:57:36 -04:00

98 lines
2.7 KiB
Racket

#lang s-exp "../cur.rkt"
(require "sugar.rkt")
;; TODO: Handle multiple provide forms properly
;; TODO: Handle (all-defined-out) properly
(provide
True T
thm:anything-implies-true
False
Not
And
conj
thm:and-is-symmetric proof:and-is-symmetric
thm:proj1 proof:proj1
thm:proj2 proof:proj2
== refl)
(data True : Type (T : True))
(define-theorem thm:anything-implies-true (forall (P : Type) True))
(qed thm:anything-implies-true (lambda (P : Type) T))
(data False : Type)
(define-type (Not (A : Type)) (-> A False))
(data And : (forall* (A : Type) (B : Type) Type)
(conj : (forall* (A : Type) (B : Type)
(x : A) (y : B) (And A B))))
(define-theorem thm:and-is-symmetric
(forall* (P : Type) (Q : Type) (ab : (And P Q)) (And Q P)))
(define proof:and-is-symmetric
(lambda* (P : Type) (Q : Type) (ab : (And P Q))
(case* And Type ab (P Q)
(lambda* (P : Type) (Q : Type) (ab : (And P Q))
(And Q P))
((conj (P : Type) (Q : Type) (x : P) (y : Q)) IH: () (conj Q P y x)))))
(qed thm:and-is-symmetric proof:and-is-symmetric)
(define-theorem thm:proj1
(forall* (A : Type) (B : Type) (c : (And A B)) A))
(define proof:proj1
(lambda* (A : Type) (B : Type) (c : (And A B))
(case* And Type c (A B)
(lambda* (A : Type) (B : Type) (c : (And A B)) A)
((conj (A : Type) (B : Type) (a : A) (b : B)) IH: () a))))
(qed thm:proj1 proof:proj1)
(define-theorem thm:proj2
(forall* (A : Type) (B : Type) (c : (And A B)) B))
(define proof:proj2
(lambda* (A : Type) (B : Type) (c : (And A B))
(case* And Type c (A B)
(lambda* (A : Type) (B : Type) (c : (And A B)) B)
((conj (A : Type) (B : Type) (a : A) (b : B)) IH: () b))))
(qed thm:proj2 proof:proj2)
#| TODO: Disabled until #22 fixed
(data Or : (forall* (A : Type) (B : Type) Type)
(left : (forall* (A : Type) (B : Type) (a : A) (Or A B)))
(right : (forall* (A : Type) (B : Type) (b : B) (Or A B))))
(define-theorem thm:A-or-A
(forall* (A : Type) (o : (Or A A)) A))
(define proof:A-or-A
(lambda* (A : Type) (c : (Or A A))
;; TODO: What should the motive be?
(elim Or Type (lambda* (A : Type) (B : Type) (c : (Or A B)) A)
(lambda* (A : Type) (B : Type) (a : A) a)
;; TODO: How do we know B is A?
(lambda* (A : Type) (B : Type) (b : B) b)
A A c)))
(qed thm:A-or-A proof:A-or-A)
|#
(data == : (forall* (A : Type) (x : A) (-> A Type))
(refl : (forall* (A : Type) (x : A) (== A x x))))
(module+ test
(require rackunit "bool.rkt" "nat.rkt")
(check-equal?
(elim == Type (λ* (A : Type) (x : A) (y : A) (p : (== A x y)) Nat)
(λ* (A : Type) (x : A) z)
Bool
true
true
(refl Bool true))
z))