cur/redex-core.rkt
William J. Bowman 176f08dd92 Added inductive types; assorted fixes
* Fixed variable typing; weakening is no longer a rule but built into
  lookup logic.
* Fixed substitution.
2014-07-16 18:51:02 +02:00

412 lines
13 KiB
Racket

#lang racket/base
(require
(only-in racket/set set=?)
(only-in racket curry)
redex/reduction-semantics)
#;(provide
define-constructor-for
match
define-fun
define-rec
lambda)
;; References:
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
;; http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf
;; Core language. Surface langauge should provide short-hand, such as
;; -> for non-dependent function types, and type inference.
(define-language dtracketL
(i ::= natural)
(U ::= Type (Unv i))
(x ::= variable-not-otherwise-mentioned)
;; TODO: Having 2 binders is stupid.
(v ::= (Π (x : t) t) (λ (x : t) t) x U)
(t e ::= (case e (x e) (x e)...) v (t t)))
(module+ test
(require rackunit)
(check-true (redex-match? dtracketL x (term T)))
(check-true (redex-match? dtracketL x (term truth)))
(check-true (redex-match? dtracketL x (term zero)))
(check-true (redex-match? dtracketL x (term s)))
(check-true (redex-match? dtracketL t (term zero)))
(check-true (redex-match? dtracketL t (term s)))
(check-true (redex-match? dtracketL t (term Type)))
(check-true (redex-match? dtracketL x (term nat)))
(check-true (redex-match? dtracketL t (term nat)))
(check-true (redex-match? dtracketL U (term Type)))
(check-true (redex-match? dtracketL U (term (Unv 0))))
(check-true (redex-match? dtracketL e (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (redex-match? dtracketL v (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (redex-match? dtracketL t (term (λ (x_0 : (Unv 0)) x_0)))))
;; 'A'
;; Types of Universes
;; Replace with sub-typing
(define-judgment-form dtracketL
#:mode (unv-ok I O)
#:contract (unv-ok U U)
[-----------------
(unv-ok Type (Unv 0))]
[(where i_2 ,(sub1 (term i_0)))
(unv-ok (Unv i_2) (Unv i_3))
(where i_1 ,(add1 (term i_3)))
-----------------
(unv-ok (Unv i_0) (Unv i_1))])
;; 'R'
;; Kinding, I think
(define-judgment-form dtracketL
#:mode (unv-kind I I O)
#:contract (unv-kind U U U)
[----------------
(unv-kind Type Type Type)]
[----------------
(unv-kind (Unv i) Type Type)]
[(where i_3 ,(max (term i_1) (term i_2)))
----------------
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
;; NB: Substitution is hard
(define-metafunction dtracketL
subst : t x t -> t
[(subst x x t) t]
[(subst x_0 x t) x_0]
[(subst (Π (x : t_0) t_1) x t) (Π (x : t_0) t_1)]
[(subst (λ (x : t_0) t_1) x t) (λ (x : t_0) t_1)]
[(subst (Π (x_0 : t_0) t_1) x t) (Π (x_0 : t_0) (subst t_1 x t))]
[(subst (λ (x_0 : t_0) t_1) x t) (λ (x_0 : t_0) (subst t_1 x t))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))])
;; NB:
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
(define-extended-language dtracket-redL dtracketL
(E hole (E t) (λ (x : t) E) (Π (x : t) E)))
;; TODO: Congruence-closure instead of β
(define ==β
(reduction-relation dtracket-redL
(==> ((Π (x : t_0) t_1) t_2)
(subst t_1 x t_2))
(==> ((λ (x : t) e_0) e_1)
(subst e_0 x e_1))
with
[(--> (in-hole E t_0) (in-hole E t_1))
(==> t_0 t_1)]))
(define-metafunction dtracket-redL
reduce : e -> e
[(reduce e) ,(car (apply-reduction-relation* ==β (term e)))])
(module+ test
(check-equal? (term (reduce Type)) (term Type))
(check-equal? (term (reduce ((λ (x : t) x) Type))) (term Type))
(check-equal? (term (reduce ((Π (x : t) x) Type))) (term Type))
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) Type))))
(term (Π (x : t) Type)))
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) x))))
(term (Π (x : t) x))))
;; TODO: Bi-directional and inference?
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
(define-extended-language dtracket-typingL dtracketL
(Σ Γ ::= (Γ x : t)))
;; NB: Depends on clause order
(define-metafunction dtracket-typingL
lookup : Γ x -> t or #f
[(lookup x) #f]
[(lookup (Γ x : t) x) t]
[(lookup (Γ x_0 : t_0) x_1) (lookup Γ x_1)])
;; NB: Depends on clause order
(define-metafunction dtracket-typingL
remove : Γ x -> Γ
[(remove x) ]
[(remove (Γ x : t) x) Γ]
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
(define-metafunction dtracket-typingL
result-type : Σ t -> t or #f
[(result-type Σ (Π (x : t) e)) (result-type Σ e)]
[(result-type Σ x) ,(and (term (lookup Σ x)) (term x))]
[(result-type Σ t) #f])
(module+ test
(define Σ (term ((( nat : Type) zero : nat) s : (Π (x : nat) nat))))
(check-equal? (term nat) (term (result-type ,Σ (Π (x : nat) nat))))
(check-equal? (term nat) (term (result-type ,Σ nat))))
(define-judgment-form dtracket-typingL
#:mode (constructor-for I I O)
#:contract (constructor-for Σ t x)
[(where t_0 (result-type Σ t))
-------------
(constructor-for (Σ x : t) t_0 x)]
[(constructor-for Σ t_1 x)
-------------
(constructor-for (Σ x_0 : t_0) t_1 x)])
(module+ test
(check-true
(judgment-holds (constructor-for (( truth : Type) T : truth) truth T)))
(check-true
(judgment-holds
(constructor-for (( nat : Type) zero : nat)
nat zero)))
(check set=?
(judgment-holds
(constructor-for ((( nat : Type) zero : nat) s : (Π (x : nat) nat))
nat x) x)
(list (term zero) (term s))))
(define-metafunction dtracket-typingL
constructors-for : Σ t (x ...) -> #t or #f
[(constructors-for Σ t (x ...))
,((lambda (x y) (and (set=? x y) (= (length x) (length y))))
(term (x ...))
(judgment-holds (constructor-for Σ t x_00) x_00))])
(module+ test
(check-true
(term (constructors-for ((( nat : Type) zero : nat) s : (Π (x : nat) nat))
nat (zero s))))
(check-false
(term (constructors-for ((( nat : Type) zero : nat) s : (Π (x : nat) nat))
nat (zero)))))
(define-metafunction dtracketL
branch-type : t t t -> t
[(branch-type t_ind (Π (x_0 : t) e_0) (Π (x_1 : t) e_1))
(branch-type t_ind e_0 e_1)]
[(branch-type t_ind t_ind t) t])
(module+ test
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ zero) Type)))
(check-equal? (term nat) (term (branch-type nat nat nat)))
(check-equal? (term Type) (term (branch-type nat (lookup ,Σ s) (Π (x : nat) Type)))))
(define-metafunction dtracket-typingL
branch-types-match : Σ (x ...) (t ...) t t -> #t or #f
[(branch-types-match Σ (x ...) (t_11 ...) t t_1)
,(andmap (curry equal? (term t)) (term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
(module+ test
(check-true
(term (branch-types-match (( truth : Type) T : truth) () () Type nat)))
(check-true
(term (branch-types-match ,Σ (zero s) (Type (Π (x : nat) Type)) Type nat)))
(check-true
(term (branch-types-match ,Σ (zero s) (nat (Π (x : nat) nat)) nat nat))))
(define-judgment-form dtracket-typingL
#:mode (wf I I)
#:contract (wf Σ Γ)
[-----------------
(wf )]
[(types Σ Γ t U)
-----------------
(wf Σ (Γ x : t))]
[(types Σ t U)
-----------------
(wf (Σ x : t) )])
(module+ test
(check-true (judgment-holds (wf )))
(check-true (judgment-holds (wf ( truth : Type) )))
(check-true (judgment-holds (wf ( x : Type))))
(check-true (judgment-holds (wf ( nat : Type) ( x : nat))))
(check-true (judgment-holds (wf ( nat : Type) ( x : (Π (x : nat) nat))))))
(define-judgment-form dtracket-typingL
#:mode (types I I I O)
#:contract (types Σ Γ e t)
[(unv-ok U_0 U_1)
(wf Σ Γ)
----------------- "DTR-Axiom"
(types Σ Γ U_0 U_1)]
[(where t (lookup Σ x))
----------------- "DTR-Inductive"
(types Σ Γ x t)]
[(where t (lookup Γ x))
----------------- "DTR-Start"
(types Σ Γ x t)]
[(types Σ Γ t_0 U_1)
(types Σ (Γ x : t_0) t U_2)
(unv-kind U_1 U_2 U)
----------------- "DTR-Product"
(types Σ Γ (Π (x : t_0) t) U)]
[(types Σ Γ e_0 (Π (x : t_0) t_1))
(types Σ Γ e_1 t_0)
----------------- "DTR-Application"
(types Σ Γ (e_0 e_1) (subst t_1 x e_1))]
[(types Σ (Γ x : t_0) e t_1)
(types Σ Γ (Π (x : t_0) t_1) U)
----------------- "DTR-Abstraction"
(types Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(types Σ Γ e t_1)
(side-condition (constructors-for Σ t_1 (x_0 x_1 ...)))
(types Σ Γ e_0 t_00)
(types Σ Γ e_1 t_11) ...
;; TODO Some of these meta-functions aren't very consistent in terms
;; of interface
(where t (branch-type t_1 (lookup Σ x_0) t_00))
(side-condition (branch-types-match Σ (x_1 ...) (t_11 ...) t t_1))
----------------- "DTR-Case"
(types Σ Γ (case e (x_0 e_0) (x_1 e_1) ...) t)]
;; TODO: beta-equiv
;; This rule is no good for algorithmic checking; Redex infinitly
;; searches it.
;; Perhaps something closer to Zombies = type would be better.
;; For now, reduce types
#;[(types Γ e (in-hole E t))
(where t_0 (in-hole E t))
(where t_1 ,(car (apply-reduction-relation* ==β (term t_0))))
(types Γ t_1 U)
----------------- "DTR-Conversion"
(types Γ e t_1)])
(module+ test
(check-true (judgment-holds (types Type (Unv 0))))
(check-true (judgment-holds (types ( x : Type) Type (Unv 0))))
(check-true (judgment-holds (types ( x : Type) x Type)))
(check-true (judgment-holds (types (( x_0 : Type) x_1 : Type)
(Π (x_3 : x_0) x_1) Type)))
(check-true (judgment-holds (types (λ (x : Type) x) (Π (x : Type) Type))))
(check-true (judgment-holds (types (λ (y : Type) (λ (x : y) x))
(Π (y : Type) (Π (x : y) y)))))
(check-true
(judgment-holds (types (( truth : Type) T : truth)
T
truth)))
(check-true
(judgment-holds (types (( truth : Type) T : truth)
Type
(Unv 0))))
(check-true
(judgment-holds (types (( truth : Type) T : truth)
(case T (T Type))
(Unv 0))))
(check-false
(judgment-holds (types (( truth : Type) T : truth)
(case T (T Type) (T Type))
(Unv 0))))
(define-syntax-rule (nat-test syn ...)
(check-true (judgment-holds
(types ((( nat : Type) zero : nat) s : (Π (x : nat) nat))
syn ...))))
(nat-test (Π (x : nat) nat) Type)
(nat-test (λ (x : nat) x) (Π (x : nat) nat))
(nat-test (case zero (zero zero) (s (λ (x : nat) x)))
nat)
(nat-test nat Type)
(nat-test zero nat)
(nat-test s (Π (x : nat) nat))
(nat-test (s zero) nat)
(nat-test (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
nat)
(nat-test (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
nat)
(check-false (judgment-holds
(types ((( nat : Type) zero : nat) s : (Π (x : nat) nat))
(case zero (zero (s zero)))
nat))))
(define-judgment-form dtracket-typingL
#:mode (type-check I I I)
#:contract (type-check Γ e t)
[(types Σ e t)
---------------
(type-check Σ e (reduce t))])
;; Infer-core Language
;; A relaxed core where annotation are optional.
(define-extended-language dtracket-surfaceL dtracketL
(v ::= .... (λ x e) (Π t e))
(t e ::= .... (data x (x : t) (x : t) ...) (case e ([e e] ...)) (e : t)))
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
#;(define-judgment-form dtracket-typingL
#:mode (synth I I O)
#:contract (synth Γ t t)
[(unv-ok U_0 U_1)
----------------- "DTR-SAxiom"
(synth U_0 U_1)]
[(where t (lookup Γ x))
(synth (remove Γ x) t U)
----------------- "DTR-SStart"
(synth Γ x t)]
[(synth Γ t t_1) (synth Γ t_0 U)
----------------- "DTR-SWeakening"
(synth (Γ x : t_0) t t_1)]
[(check (Γ x : t_0) e t_1)
----------------- "DTR-SAbstraction"
(check Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(synth Γ e_0 (Π (x : t_0) t_1))
(check Γ e_1 t_0)
----------------- "DTR-SApplication"
(synth Γ (e_0 e_1) (subst t_1 x e_1))]
[(check Γ e t)
----------------- "DTR-SAnnotate"
(synth Γ (e : t) t)])
#;(define-judgment-form dtracket-typingL
#:mode (check I I I)
#:contract (check Γ t t)
[(check (Γ x : t_0) e t_1)
----------------- "DTR-Abstraction"
(check Γ (λ x e) (Π (x : t_0) t_1))]
[(synth Γ e t)
----------------- "DTR-SSynth"
(check Γ e t)])
#;(module+ test
(check-equal?
(list (term (Unv 0)))
(judgment-holds (synth Type U) U))
(check-equal?
(list (term Unv 0))
(judgment-holds (synth ( x : Type) Type U)))
(check-equal?
(list (term Type))
(judgment-holds (synth ( x : Type) x U)))
(check-equal?
(list (term Type))
(judgment-holds (synth (( x_0 : Type) x_1 : Type) (Π (x_3 : x_0) x_1) U)))
(check-equal?
(list ())
(judgment-holds (synth (λ (x : Type) x) (Π (x : Type) Type))))
(check-true (judgment-holds (types (λ (y : Type) (λ (x : y) x))
(Π (y : Type) (Π (x : y) y))))))