cur/proofs-for-free.rkt
William J. Bowman 61bdf8f5d4 Proper names and inductive families
These fixes are merged because properly testing the latter requires
having the former, while properly implementing the former is made
simpler by having the latter.

Fixed handling of names/substitution
===
* Added capture-avoiding substitution. Closes #7
* Added equivalence during typing checking, including α-equivalence and
  limited β-equivalence. Closes #8
* Exposed better typing-check reflection features to allow typing
  checking modulo equivalence.
* Tweaked QED macro to use new type-checking reflection feature.

Fixed inductive families
===
The implementation of inductive families is now based on the theoretical
models of inductive families, rather than an ad-hoc non-dependent
pattern matcher.

* Removed case and fix from Cur and Curnel. They are replaced by elim,
  the generic eliminator for inductive families. Closes #5. Since fix is
  no more, also closes #2.
* Elimination of false works! Closes #4.
* Changed uses of case to elim in Curnel
* Changed uses of case* in Cur to use eliminators. Breaks case* API.
* Fixed Coq generator to use eliminators
* Fixed Latex generator
2015-04-14 19:16:47 -04:00

108 lines
3.8 KiB
Racket

#lang s-exp "redex-curnel.rkt"
(require "stdlib/sugar.rkt" "stdlib/prop.rkt" racket/trace
(for-syntax racket/syntax))
;; ---------
(begin-for-syntax
(define (rename_id i x)
(format-id x "~a~a" x i)))
(define-syntax (rename syn)
(syntax-case syn ()
[(_ i ls e)
(syntax-case #`(ls #,(cur-expand #'e)) (Type forall Unv lambda :)
[(_ Type) #'Type]
[(_ (Unv n)) #'(Unv n)]
[((xr ...) (lambda (x : t) e))
#'(lambda (x : (rename i (xr ...) t))
(rename i (xr ... x) e))]
[((xr ...) (forall (x : t) e))
#'(forall (x : (rename i (xr ...) t))
(rename i (xr ... x) e))]
[(ls (e1 e2))
#'((rename i ls e1) (rename i ls e2))]
[(ls x)
(if (member (syntax->datum #'x) (syntax->datum #'ls))
#'x
(rename_id (syntax->datum #'i) #'x))])]))
(trace-define-syntax (translate syn)
(syntax-parse (cur-expand (syntax-case syn () [(_ e) #'e]))
;; TODO: Need to add these to a literal set and export it
;; Or, maybe redefine syntax-parse
#:datum-literals (:)
#:literals (lambda forall data real-app case Type)
[Type
#'(lambda* (x1 : Type) (x2 : Type) (->* x1 x2 Type))]
[(forall (x : A) B)
(let ([x1 (rename_id 1 #'x)]
[x2 (rename_id 2 #'x)]
[xr (rename_id 'r #'x)])
#`(lambda* (f1 : (rename 1 () (forall (x : A) B)))
(f2 : (rename 2 () (forall (x : A) B)))
(forall* (#,x1 : (rename 1 () A)) (#,x2 : (rename 2 () A))
(#,xr : (run ((translate A) #,x1 #,x2)))
((translate B) (f1 #,x1) (f2 #,x2)))))]
[(lambda (x : A) B)
(let ([x1 (rename_id 1 #'x)]
[x2 (rename_id 2 #'x)]
[xr (rename_id 'r #'x)])
#`(lambda* (f1 : (rename 1 () (forall (x : A) B)))
(f2 : (rename 2 () (forall (x : A) B)))
(forall* (#,x1 : (rename 1 () A))
(#,x2 : (rename 2 () A))
(#,xr : (run ((translate A) #,x1 #,x2)))
((translate B) (f1 #,x1) (f2 #,x2)))))]
[(data id : t (c : tc) ...)
(let ([t #`(data #,(rename_id 'r #'id) : (translate t)
((translate c) : (translate tc)) ...)])
t)]
[(f a)
#`((translate f) (rename 1 () a) (rename 2 () a) (translate a))]
[x:id
;; TODO: Look up x and generate the relation. Otherwise I need to
;; manually translate all dependencies.
;; Not sure this is quite right; Racket's hygiene might `save' me.
(rename_id 'r #'x)]
[_ (raise-syntax-error "translate undefined for" syn)]))
(define-type X Type)
(define X1 X)
(define X2 X)
(define (Xr (x1 : X1) (x2 : X2)) true)
;; The type of a CPS function
(define-type CPSf (forall* (ans : Type) (k : (-> X ans)) ans))
(define (CPSf-relation (f1 : CPSf) (f2 : CPSf))
;; TODO: Fix run so I can simply use (run CPSf) to perform
;; substitution
(translate (run CPSf))
(translate (forall* (ans : Type) (k : (-> X ans)) ans)))
#;(module+ test
(require rackunit)
(check-equal?
(translate (forall* (ans : Type) (k : (-> X ans)) ans))
(forall* (ans1 : Type) (ans2 : Type) (ansr : (->* ans1 ans2 Type))
(forall* (k1 : (-> X ans1)) (k2 : (-> X ans2))
(kr : (forall* (_1 : X) (_2 : X) (_r : (Xr _1 _2))
(ansr (k1 _1) (k2 _2))))
(ansr (f1 ans1 k1) (f2 ans2 k2))))))
;; By parametricity, every CPSf is related it itself in the CPS relation
(define-type paramCPSf (forall* (f : CPSf) (CPSf-relation f f)))
(define (id (X : Type) (x : X)) x)
(define-theorem thm:continuation-shuffle
(forall* (f : CPSf)
(ans : Type)
(ansr : (-> ans ans Type))
(k : (-> X ans))
(ansr (f ans k) (k (f ans (id ans))))))
#;(define (rel (x1 : X) (x2 : X))
(and (Xr x1 x2)
))
#;(paramCPSf f X X rel k k)