
* Examples of Coq code, and what one wishes one could do. * Examples of similar model in Cur, and what is currently required.
36 lines
999 B
Racket
36 lines
999 B
Racket
#lang cur
|
|
|
|
(require
|
|
cur/stdlib/sugar
|
|
cur/stdlib/nat
|
|
cur/stdlib/prop)
|
|
|
|
|
|
;; TODO: Axioms
|
|
;; TODO: implicits
|
|
;; No way to define axioms in Cur, yet, although it is a simple change.
|
|
;; No implicits in Cur, yet
|
|
(define (plus_0_n (f_equal : (-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B))
|
|
(== A a1 a2)
|
|
(== B (f a1) (f a2)))) (n : Nat))
|
|
(match n
|
|
;; TODO: This should work
|
|
#:return (== Nat n (plus z n))
|
|
[z (refl Nat z)]
|
|
[(s (n : Nat))
|
|
(f_equal Nat n (plus z n) Nat s (recur n))]))
|
|
(:: plus_n_0
|
|
(forall
|
|
(f_equal : (-> (A : Type) (a1 : A) (a2 : A) (B : Type) (f : (-> A B))
|
|
(== A a1 a2) (== B (f a1) (f a2))))
|
|
(n : Nat)
|
|
(== Nat n (plus z n))))
|
|
|
|
#;(define (plus_n_Sm (n : Nat) (m : Nat))
|
|
(elim Nat Type
|
|
(lambda (n : Nat) (== Nat (plus n m) (plus m n)))
|
|
(plus_n_0 m)
|
|
(lambda (y : Nat) (ih : ))
|
|
(elim == Type)))
|
|
#;(:: plus_n_Sm (forall (n : Nat) (m : Nat) (== (s (plus n m)) (plus n (s m)))))
|