cur/cur-doc/cur/scribblings/curnel.scrbl
William J. Bowman 792d37252f
Split and reorganized package. Closes #14
Created split packages: cur, cur-lib, cur-test, cur-doc, similar to
other Racket packages, e.g., redex.

* Moved tests out of core and into cur-test
* Moved docs into cur-doc
* Moved cur implementation and libraries into cur-lib
* Added cur meta-pacakge that installs all of the above
2016-01-10 19:10:12 -05:00

130 lines
4.6 KiB
Racket

#lang scribble/manual
@(require
"defs.rkt"
scribble/eval)
@title{Curnel Forms}
@deftech{Curnel forms} are the core forms provided @racketmodname[cur].
These forms come directly from the trusted core and are all that remain after macro expansion.
@todo{Link to guide regarding macro expansion}
The core of @racketmodname[cur] is essentially TT with an impredicative universe @racket[(Type 0)].
For a very understandable in-depth look at TT, see chapter 2 of
@hyperlink["https://eb.host.cs.st-andrews.ac.uk/writings/thesis.pdf"
"Practical Implementation of a Dependently Typed Functional Programming Language"], by
Edwin C. Brady.
@(define curnel-eval (curnel-sandbox "(require cur/stdlib/nat cur/stdlib/bool cur/stdlib/prop)"))
@defform*[((Type n)
Type)]{
Define the universe of types at level @racket[n], where @racket[n] is any natural number.
@racket[Type] is a synonym for @racket[(Type 0)]. Cur is impredicative
in @racket[(Type 0)], although this is likely to change to a more
restricted impredicative universe.
@examples[#:eval curnel-eval
(Type 0)]
@examples[#:eval curnel-eval
(Type 1)]
@examples[#:eval curnel-eval
Type]
}
@defform*[((lambda (id : type-expr) body-expr)
(λ (id : type-expr) body-expr))]{
Produces a single arity procedure, binding the identifier @racket[id] of type @racket[type-expr] in @racket[body-expr] and in the type of
@racket[body-expr].
Both @racket[type-expr] and @racket[body-expr] can contain non-curnel forms, such as macros.
Currently, Cur will return the underlying representation of a procedure when a @racket[lambda] is
evaluated at the top-level. Do not rely on this representation.
@examples[#:eval curnel-eval
(lambda (x : Type) x)]
@examples[#:eval curnel-eval
(λ (x : Type) (lambda (y : x) y))]
@defform[(#%app procedure argument)]{
Applies the single arity @racket[procedure] to @racket[argument].
}
@examples[#:eval curnel-eval
((lambda (x : (Type 1)) x) Type)]
@examples[#:eval curnel-eval
(#%app (lambda (x : (Type 1)) x) Type)]
}
@defform*[((forall (id : type-expr) body-expr)
( (id : type-expr) body-expr))]{
Produces a dependent function type, binding the identifier @racket[id] of type @racket[type-expr] in @racket[body-expr].
@examples[#:eval curnel-eval
(forall (x : Type) Type)]
@examples[#:eval curnel-eval
(lambda (x : (forall (x : (Type 1)) Type))
(x Type))]
}
@defform[(data id : type-expr (id* : type-expr*) ...)]{
Defines an inductive datatype named @racket[id] of type @racket[type-expr], with constructors
@racket[id*] each with the corresponding type @racket[type-expr*].
Currently, Cur does not attempt to ensure the well-foundedness of the inductive definition.
For instance, Cur does not currently perform strict positivity checking.
@examples[#:eval curnel-eval
(data Bool : Type
(true : Bool)
(false : Bool))
((lambda (x : Bool) x) true)
(data False : Type)
(data And : (forall (A : Type) (forall (B : Type) Type))
(conj : (forall (A : Type) (forall (B : Type) (forall (a : A) (forall (b : B) ((And A) B)))))))
((((conj Bool) Bool) true) false)]
}
@defform[(elim type motive-universe)]{
Returns the inductive eliminator for @racket[type] where the @racket[motive-universe] is the universe
of the motive.
The eliminator expects the next argument to be the motive, the next @racket[N] arguments to be the methods for
each of the @racket[N] constructors of the inductive type @racket[type], the next @racket[P] arguments
to be the parameters @racket[p_0 ... p_P] of the inductive @racket[type], and the final argument to be the term to
eliminate of type @racket[(type p_0 ... p_P)].
The following example runs @racket[(sub1 (s z))].
@examples[#:eval curnel-eval
(data Nat : Type
(z : Nat)
(s : (forall (n : Nat) Nat)))
(((((elim Nat Type)
(lambda (x : Nat) Nat))
z)
(lambda (n : Nat) (lambda (IH : Nat) n)))
(s z))]
}
@defform[(define id expr)]{
Binds @racket[id] to the result of @racket[expr].
@examples[#:eval curnel-eval
(data Nat : Type
(z : Nat)
(s : (forall (n : Nat) Nat)))
(define sub1 (lambda (n : Nat)
(((((elim Nat Type) (lambda (x : Nat) Nat))
z)
(lambda (n : Nat) (lambda (IH : Nat) n))) n)))
(sub1 (s (s z)))
(sub1 (s z))
(sub1 z)]
}
@todo{Document @racket[require] and @racket[provide]}