cur/redex-curnel.rkt
William J. Bowman f8a51e65ca Attempting to fix case typing checking
Maybe I shouldn't bother and should fix that after fixing inductives
2015-04-10 22:42:51 -04:00

1050 lines
39 KiB
Racket
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#lang racket
;; This module contains a model of CIC, ish.
;; TODO: Strip to racket/base as much as possible
(module core racket
(require
(only-in racket/set set=?)
redex/reduction-semantics)
(provide
(all-defined-out))
(set-cache-size! 10000)
;; References:
;; http://www3.di.uminho.pt/~mjf/pub/SFV-CIC-2up.pdf
;; https://www.cs.uoregon.edu/research/summerschool/summer11/lectures/oplss-herbelin1.pdf
;; http://www.emn.fr/z-info/ntabareau/papers/universe_polymorphism.pdf
;; Core language. Surface langauge should provide short-hand, such as
;; -> for non-dependent function types, and type inference.
(define-language cicL
(i ::= natural)
(U ::= (Unv i))
(x ::= variable-not-otherwise-mentioned)
;; TODO: Having 2 binders is stupid.
(v ::= (Π (x : t) t) (μ (x : t) t) (λ (x : t) t) x U)
(t e ::= (case e (x e) ...) v (t t)))
(define x? (redex-match? cicL x))
(define t? (redex-match? cicL t))
(define e? (redex-match? cicL e))
(define v? (redex-match? cicL v))
(define U? (redex-match? cicL U))
(module+ test
(require rackunit)
(define-term Type (Unv 0))
(check-true (x? (term T)))
(check-true (x? (term A)))
(check-true (x? (term truth)))
(check-true (x? (term zero)))
(check-true (x? (term s)))
(check-true (t? (term zero)))
(check-true (t? (term s)))
(check-true (x? (term nat)))
(check-true (t? (term nat)))
(check-true (t? (term A)))
(check-true (t? (term S)))
(check-true (U? (term (Unv 0))))
(check-true (U? (term Type)))
(check-true (e? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (v? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0))))
(check-true (t? (term (λ (x_0 : (Unv 0)) x_0)))))
;; 'A'
;; (Unv 0)s of Universes
;; Replace with sub-typing
(define-judgment-form cicL
#:mode (unv-ok I O)
#:contract (unv-ok U U)
[(where i_1 ,(add1 (term i_0)))
-----------------
(unv-ok (Unv i_0) (Unv i_1))])
;; 'R'
;; Kinding, I think
(define-judgment-form cicL
#:mode (unv-kind I I O)
#:contract (unv-kind U U U)
[----------------
(unv-kind (Unv 0) (Unv 0) (Unv 0))]
[----------------
(unv-kind (Unv 0) (Unv i) (Unv i))]
[----------------
(unv-kind (Unv i) (Unv 0) (Unv 0))]
[(where i_3 ,(max (term i_1) (term i_2)))
----------------
(unv-kind (Unv i_1) (Unv i_2) (Unv i_3))])
;; NB: Substitution is hard
;; NB: Copy and pasted from Redex examples
(define-metafunction cicL
subst-vars : (x any) ... any -> any
[(subst-vars (x_1 any_1) x_1) any_1]
[(subst-vars (x_1 any_1) (any_2 ...))
((subst-vars (x_1 any_1) any_2) ...)]
[(subst-vars (x_1 any_1) any_2) any_2]
[(subst-vars (x_1 any_1) (x_2 any_2) ... any_3)
(subst-vars (x_1 any_1) (subst-vars (x_2 any_2) ... any_3))]
[(subst-vars any) any])
(define-metafunction cicL
subst : t x t -> t
[(subst U x t) U]
[(subst x x t) t]
[(subst x_0 x t) x_0]
[(subst (any (x : t_0) t_1) x t)
(any (x : (subst t_0 x t)) t_1)]
[(subst (any (x_0 : t_0) t_1) x t)
(any (x_new : (subst (subst-vars (x_0 x_new) t_0) x t))
(subst (subst-vars (x_0 x_new) t_1) x t))
(where x_new
,(variable-not-in
(term (x_0 t_0 x t t_1))
(term x_0)))]
[(subst (e_0 e_1) x t) ((subst e_0 x t) (subst e_1 x t))]
[(subst (case e (x_0 e_0) ...) x t)
(case (subst e x t)
(x_0 (subst e_0 x t)) ...)])
(module+ test
(check-true (t? (term (Π (a : A) (Π (b : B) ((and A) B))))))
(check-equal?
(term (Π (a : S) (Π (b : B) ((and S) B))))
(term (subst (Π (a : A) (Π (b : B) ((and A) B))) A S))))
;; NB:
;; TODO: Why do I not have tests for substitutions?!?!?!?!?!?!?!!?!?!?!?!?!?!!??!?!
(define-metafunction cicL
subst-all : t (x ...) (e ...) -> t
[(subst-all t () ()) t]
[(subst-all t (x_0 x ...) (e_0 e ...))
(subst-all (subst t x_0 e_0) (x ...) (e ...))])
(define-extended-language cic-redL cicL
(E hole (E t) (case E (x e) ...)))
(define-metafunction cicL
inductive-name : t -> x or #f
[(inductive-name x) x]
[(inductive-name (t_1 t_2)) (inductive-name t_1)]
[(inductive-name t) #f])
(module+ test
(check-equal?
(term and)
(term (inductive-name ((and A) B)))))
(define-metafunction cicL
inductive-apply : t t -> t
[(inductive-apply e x) e]
[(inductive-apply e (e_1 e_2))
((inductive-apply e e_1) e_2)])
;; TODO: Congruence-closure instead of β
(define ==β
(reduction-relation cic-redL
(==> ((μ (x : t) e_0) e_1)
((subst e_0 x (μ (x : t) e_0)) e_1))
(==> ((λ (x : t_0) t_1) t_2)
(subst t_1 x t_2))
(==> ((Π (x : t_0) t_1) t_2)
(subst t_1 x t_2))
(==> (case e_9
(x_0 e_0) ... (x e) (x_r e_r) ...)
(inductive-apply e e_9)
(where x (inductive-name e_9)))
with
[(--> (in-hole E t_0) (in-hole E t_1))
(==> t_0 t_1)]))
(define-metafunction cic-redL
reduce : e -> e
[(reduce e) t_1
(where t_1 ,(car (apply-reduction-relation* ==β (term e))))])
(module+ test
(check-equal? (term (reduce (Unv 0))) (term (Unv 0)))
(check-equal? (term (reduce ((λ (x : t) x) (Unv 0)))) (term (Unv 0)))
(check-equal? (term (reduce ((Π (x : t) x) (Unv 0)))) (term (Unv 0)))
;; NB: Currently not reducing under binders. I forget why.
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) (Unv 0)))))
(term (Π (x : t) (Unv 0))))
(check-equal? (term (reduce (Π (x : t) ((Π (x_0 : t) x_0) x))))
(term (Π (x : t) x)))
(check-equal? (term (reduce (case (s z) (z (s z)) (s (λ (x : nat)
(s (s x)))))))
(term (s (s z))))
(check-equal? (term (reduce (case (s (s (s z))) (z (s z)) (s (λ (x : nat)
(s (s x)))))))
(term (s (s (s (s z)))))))
;; TODO: Bi-directional and inference?
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
(define-extended-language cic-typingL cicL
(Σ Γ ::= (Γ x : t)))
(define Σ? (redex-match? cic-typingL Σ))
(define Γ? (redex-match? cic-typingL Γ))
(module+ test
;; TODO: Rename these signatures, and use them in all future tests.
(define Σ (term ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))))
(define Σ0 (term ))
(define Σ2 (term ((( nat : (Unv 0)) z : nat) s : (Π (x : nat) nat))))
(define Σ3 (term ( and : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Unv 0))))))
(define Σ4 (term (,Σ3 conj : (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B))))))))
(check-true (Σ? Σ0))
(check-true (Σ? Σ2))
(check-true (Σ? Σ4))
(check-true (Σ? Σ3))
(check-true (Σ? Σ4)))
(define-metafunction cic-typingL
append-env : Γ Γ -> Γ
[(append-env Γ ) Γ]
[(append-env Γ_2 (Γ_1 x : t))
((append-env Γ_2 Γ_1) x : t)])
;; NB: Depends on clause order
(define-metafunction cic-typingL
lookup : Γ x -> t or #f
[(lookup x) #f]
[(lookup (Γ x : t) x) t]
[(lookup (Γ x_0 : t_0) x_1) (lookup Γ x_1)])
;; NB: Depends on clause order
(define-metafunction cic-typingL
remove : Γ x -> Γ
[(remove x) ]
[(remove (Γ x : t) x) Γ]
[(remove (Γ x_0 : t_0) x_1) (remove Γ x_1)])
(define-metafunction cic-typingL
result-type : Σ t -> t or #f
[(result-type Σ (Π (x : t) e)) (result-type Σ e)]
[(result-type Σ (e_1 e_2)) (result-type Σ e_1)]
[(result-type Σ x) ,(and (term (lookup Σ x)) (term x))]
[(result-type Σ t) #f])
(module+ test
(check-equal? (term nat) (term (result-type ,Σ (Π (x : nat) nat))))
(check-equal? (term nat) (term (result-type ,Σ nat))))
(define-judgment-form cic-typingL
#:mode (constructor-for I I O)
#:contract (constructor-for Σ t x)
[(where t_0 (result-type Σ t))
-------------
(constructor-for (Σ x : t) t_0 x)]
[(constructor-for Σ t_1 x)
-------------
(constructor-for (Σ x_0 : t_0) t_1 x)])
(module+ test
(check-true
(judgment-holds (constructor-for (( truth : (Unv 0)) T : truth) truth T)))
(check-true
(judgment-holds
(constructor-for (( nat : (Unv 0)) zero : nat)
nat zero)))
(check set=?
(judgment-holds
(constructor-for ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
nat x) x)
(list (term zero) (term s))))
(define-metafunction cic-typingL
constructors-for : Σ x (x ...) -> #t or #f
[(constructors-for Σ x_0 (x ...))
,((lambda (x y) (and (set=? x y) (= (length x) (length y))))
(term (x ...))
(judgment-holds (constructor-for Σ x_0 x_00) x_00))])
(module+ test
(check-true
(term (constructors-for ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
nat (zero s))))
(check-false
(term (constructors-for ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
nat (zero))))
(check-true
(term (constructors-for ,Σ4 and (conj)))))
(define-metafunction cicL
branch-type : t t t -> t
[(branch-type t_ind (Π (x_0 : t_0) e_0) (Π (x_1 : t_1) e_1))
(branch-type t_ind e_0 e_1)
#;(side-condition (judgment-holds (equivalent t_0 t_1)))]
;[(branch-type t_ind t_ind t) t])
[(branch-type t_ind t_other t) t])
(module+ test
(check-equal? (term (Unv 0)) (term (branch-type nat (lookup ,Σ zero) (Unv 0))))
(check-equal? (term nat) (term (branch-type nat nat nat)))
(check-equal? (term (Unv 0)) (term (branch-type nat (lookup ,Σ s) (Π (x : nat) (Unv 0)))))
(check-equal?
(term (Unv 0))
(term (branch-type and (lookup ,Σ4 conj)
(Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) (Unv 0)))))))))
(define-metafunction cic-typingL
branch-types-match : Σ (x ...) (t ...) t t -> #t or #f
[(branch-types-match Σ (x ...) (t_11 ...) t t_1)
,(andmap (lambda (x) (judgment-holds (equivalent ,x t)))
(term ((branch-type t_1 (lookup Σ x) t_11) ...)))])
(module+ test
(check-true
(term (branch-types-match (( truth : (Unv 0)) T : truth) () () (Unv 0) nat)))
(check-true
(term (branch-types-match ,Σ (zero s) ((Unv 0) (Π (x : nat) (Unv 0))) (Unv 0) nat)))
(check-true
(term (branch-types-match ,Σ (zero s) (nat (Π (x : nat) nat)) nat nat))))
;; TODO: Add positivity checking.
(define-metafunction cicL
positive : t any -> #t or #f
;; (Unv 0); not a inductive constructor
[(positive any_1 any_2) #t])
(module+ test
(check-true (term (positive nat nat)))
(check-true (term (positive (Π (x : (Unv 0)) (Π (y : (Unv 0)) (Unv 0))) #f)))
(check-true (term (positive (Π (x : nat) nat) nat)))
;; (nat -> nat) -> nat
;; Not sure if this is actually supposed to pass
(check-false (term (positive (Π (x : (Π (y : nat) nat)) nat) nat)))
;; ((Unv 0) -> nat) -> nat
(check-true (term (positive (Π (x : (Π (y : (Unv 0)) nat)) nat) nat)))
;; (((nat -> (Unv 0)) -> nat) -> nat)
(check-true (term (positive (Π (x : (Π (y : (Π (x : nat) (Unv 0))) nat)) nat) nat)))
;; Not sure if this is actually supposed to pass
(check-false (term (positive (Π (x : (Π (y : (Π (x : nat) nat)) nat)) nat) nat)))
(check-true (term (positive (Unv 0) #f))))
(define-judgment-form cic-typingL
#:mode (wf I I)
#:contract (wf Σ Γ)
[-----------------
(wf )]
[(type-infer Σ Γ t t_0)
(wf Σ Γ)
-----------------
(wf Σ (Γ x : t))]
[(type-infer Σ t t_0)
(wf Σ )
(side-condition (positive t (result-type Σ t)))
-----------------
(wf (Σ x : t) )])
(module+ test
(check-true (judgment-holds (wf )))
(check-true (judgment-holds (wf ( truth : (Unv 0)) )))
(check-true (judgment-holds (wf ( x : (Unv 0)))))
(check-true (judgment-holds (wf ( nat : (Unv 0)) ( x : nat))))
(check-true (judgment-holds (wf ( nat : (Unv 0)) ( x : (Π (x : nat) nat))))))
;; TODO: Add termination checking
(define-metafunction cicL
terminates? : t -> #t or #f
[(terminates? t) #t])
(module+ test
(check-false (term (terminates? (μ (x : (Unv 0)) x))))
(check-false (term (terminates? (μ (x : (Unv 0)) (λ (y : (Unv 0)) (x y))))))
(check-true (term (terminates? (μ (x : (Unv 0)) (λ (y : (Unv 0)) y))))))
(define-judgment-form cicL
#:mode (α-equivalent I I)
#:contract (α-equivalent t t)
[----------------- "α-x"
(α-equivalent x x)]
[----------------- "α-U"
(α-equivalent U U)]
[(α-equivalent t_1 (subst t_3 x_1 x_0))
(α-equivalent t_0 t_2)
----------------- "α-binder"
(α-equivalent (any (x_0 : t_0) t_1)
(any (x_1 : t_2) t_3))]
[(α-equivalent e_0 e_2)
(α-equivalent e_1 e_3)
----------------- "α-app"
(α-equivalent (e_0 e_1) (e_2 e_3))]
[(α-equivalent e_0 e_1)
(α-equivalent e_r0 e_r1) ...
----------------- "α-case"
(α-equivalent (case e_0 (x_r0 e_r0) ..._1)
(case e_1 (x_r1 e_r1) ..._1))])
(module+ test
(define-syntax-rule (check-holds (e ...))
(check-true
(judgment-holds (e ...))))
(define-syntax-rule (check-not-holds (e ...))
(check-false
(judgment-holds (e ...))))
(check-holds (α-equivalent x x))
(check-not-holds (α-equivalent x y))
(check-holds (α-equivalent (λ (x : A) x)
(λ (y : A) y))))
(define-judgment-form cicL
#:mode (equivalent I I)
#:contract (equivalent t t)
[(where t_2 (reduce t_0))
(where t_3 (reduce t_1))
(α-equivalent t_2 t_3)
----------------- "≡-αβ"
(equivalent t_0 t_1)])
(define-judgment-form cic-typingL
#:mode (type-infer I I I O)
#:contract (type-infer Σ Γ e t)
[(unv-ok U_0 U_1)
(wf Σ Γ)
----------------- "DTR-Axiom"
(type-infer Σ Γ U_0 U_1)]
[(where t (lookup Σ x))
----------------- "DTR-Inductive"
(type-infer Σ Γ x t)]
[(where t (lookup Γ x))
----------------- "DTR-Start"
(type-infer Σ Γ x t)]
[(type-infer Σ Γ t_0 U_1)
(type-infer Σ (Γ x : t_0) t U_2)
(unv-kind U_1 U_2 U)
----------------- "DTR-Product"
(type-infer Σ Γ (Π (x : t_0) t) U)]
[(type-infer Σ Γ e_0 (Π (x_0 : t_0) t_1))
(type-infer Σ Γ e_1 t_2)
(equivalent t_0 t_2)
----------------- "DTR-Application"
(type-infer Σ Γ (e_0 e_1) (subst t_1 x_0 e_1))]
[(type-infer Σ (Γ x : t_0) e t_1)
(type-infer Σ Γ (Π (x : t_0) t_1) U)
----------------- "DTR-Abstraction"
(type-infer Σ Γ (λ (x : t_0) e) (Π (x : t_0) t_1))]
[(side-condition (terminates? (μ (x : t_0) e)))
(type-infer Σ (Γ x : t_0) e t_0)
(type-infer Σ Γ t_0 U)
----------------- "DTR-Fix"
(type-infer Σ Γ (μ (x : t_0) e) t_0)]
[(type-infer Σ Γ e t_9)
(where t_1 (inductive-name t_9))
(side-condition (constructors-for Σ t_1 (x_0 x_1 ...)))
(type-infer Σ Γ e_0 t_00)
(type-infer Σ Γ e_1 t_11) ...
;; TODO Some of these meta-functions aren't very consistent in terms
;; of interface
(where t (branch-type t_1 (lookup Σ x_0) t_00))
(side-condition (branch-types-match Σ (x_1 ...) (t_11 ...) t t_1))
----------------- "DTR-Case"
(type-infer Σ Γ (case e (x_0 e_0) (x_1 e_1) ...) t)]
;; TODO: This shouldn't be a special case, but I failed to forall
;; quantify properly over the branches in the above case, and I'm lazy.
;; TODO: Seem to need bidirectional checking to pull this off
;; http://www.cs.ox.ac.uk/ralf.hinze/WG2.8/31/slides/stephanie.pdf
#;[(types Σ Γ e t_9)
(where t_1 (inductive-name t_9))
(side-condition (constructors-for Σ t_1 ()))
----------------- "DTR-Case-Empty"
(types Σ Γ (case e) t)]
;; TODO: beta-equiv
;; This rule is no good for algorithmic checking; Redex infinitly
;; searches it.
;; Perhaps something closer to Zombies = type would be better.
;; For now, reduce types
#;[(types Σ Γ e (in-hole E t))
(where t_0 (in-hole E t))
(where t_1 ,(car (apply-reduction-relation* ==β (term t_0))))
(types Σ Γ t_1 U)
----------------- "DTR-Conversion"
(types Σ Γ e t_1)])
(define-judgment-form cic-typingL
#:mode (type-check I I I I)
#:contract (type-check Σ Γ e t)
[(type-infer Σ Γ e t_0)
(equivalent t t_0)
----------------- "DTR-Check"
(type-check Σ Γ e t)])
(module+ test
(check-holds (type-infer (Unv 0) (Unv 1)))
(check-holds (type-infer ( x : (Unv 0)) (Unv 0) (Unv 1)))
(check-holds (type-infer ( x : (Unv 0)) x (Unv 0)))
(check-holds (type-infer (( x_0 : (Unv 0)) x_1 : (Unv 0))
(Π (x_3 : x_0) x_1) (Unv 0)))
(check-holds (type-infer ( x_0 : (Unv 0)) x_0 U_1))
(check-holds (type-infer (( x_0 : (Unv 0)) x_2 : x_0) (Unv 0) U_2))
(check-holds (unv-kind (Unv 0) (Unv 0) (Unv 0)))
(check-holds (type-infer ( x_0 : (Unv 0)) (Π (x_2 : x_0) (Unv 0)) t))
(check-holds (type-infer (λ (x : (Unv 0)) x) (Π (x : (Unv 0)) (Unv 0))))
(check-holds (type-infer (λ (y : (Unv 0)) (λ (x : y) x))
(Π (y : (Unv 0)) (Π (x : y) y))))
(check-equal? (list (term (Unv 1)))
(judgment-holds
(type-infer (( x1 : (Unv 0)) x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0)))
U)
U))
(check-holds
(type-infer (Π (x2 : (Unv 0)) (Unv 0)) U))
(check-holds
(type-infer ( x1 : (Unv 0)) (λ (x2 : (Unv 0)) (Π (t6 : x1) (Π (t2 : x2) (Unv 0))))
t))
(check-holds (type-infer (( truth : (Unv 0)) T : truth)
T truth))
(check-holds (type-infer (( truth : (Unv 0)) T : truth)
(Unv 0)
(Unv 1)))
(check-holds (type-infer (( truth : (Unv 0)) T : truth)
(case T (T (Unv 0)))
(Unv 1)))
(check-not-holds
(type-infer (( truth : (Unv 0)) T : truth)
(case T (T (Unv 0)) (T (Unv 0)))
(Unv 1)))
(define-syntax-rule (nat-test syn ...)
(check-holds (type-infer ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
syn ...)))
(nat-test (Π (x : nat) nat) (Unv 0))
(nat-test (λ (x : nat) x) (Π (x : nat) nat))
(nat-test (case zero (zero zero) (s (λ (x : nat) x)))
nat)
(nat-test nat (Unv 0))
(nat-test zero nat)
(nat-test s (Π (x : nat) nat))
(nat-test (s zero) nat)
(nat-test (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
nat)
(nat-test (case zero (zero (s zero)) (s (λ (x : nat) (s (s x)))))
nat)
(check-not-holds (type-infer ((( nat : (Unv 0)) zero : nat) s : (Π (x : nat) nat))
(case zero (zero (s zero)))
nat))
(define lam (term (λ (nat : (Unv 0)) nat)))
(check-equal?
(list (term (Π (nat : (Unv 0)) (Unv 0))))
(judgment-holds (type-infer ,Σ0 ,lam t) t))
(check-equal?
(list (term (Π (nat : (Unv 0)) (Unv 0))))
(judgment-holds (type-infer ,Σ2 ,lam t) t))
(check-equal?
(list (term (Π (x : (Π (y : (Unv 0)) y)) nat)))
(judgment-holds (type-infer ( nat : (Unv 0)) (λ (x : (Π (y : (Unv 0)) y)) (x nat))
t) t))
(check-equal?
(list (term (Π (y : (Unv 0)) (Unv 0))))
(judgment-holds (type-infer ( nat : (Unv 0)) (λ (y : (Unv 0)) y) t) t))
(check-equal?
(list (term (Unv 0)))
(judgment-holds (type-infer ( nat : (Unv 0))
((λ (x : (Π (y : (Unv 0)) (Unv 0))) (x nat))
(λ (y : (Unv 0)) y))
t) t))
(check-equal?
(list (term (Unv 0)) (term (Unv 1)))
(judgment-holds
(type-infer ,Σ4 (Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))
U) U))
(check-holds
(type-infer ,Σ4 ( S : (Unv 0)) conj (Π (A : (Unv 0)) (Π (B : (Unv 0)) (Π (a : A) (Π (b : B) ((and A) B)))))))
(check-holds (type-infer ,Σ4 ( S : (Unv 0)) S (Unv 0)))
(check-holds (type-check ,Σ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
(check-holds (type-check ,Σ4 ( S : (Unv 0)) (conj S)
(Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B))))))
(check-holds (type-check ,Σ4 (λ (S : (Unv 0)) (conj S))
(Π (S : (Unv 0)) (Π (B : (Unv 0)) (Π (a : S) (Π (b : B) ((and S) B)))))))
(check-holds (type-check ((,Σ4 true : (Unv 0)) tt : true)
((((conj true) true) tt) tt)
((and true) true)))
(check-holds (type-infer ((,Σ4 true : (Unv 0)) tt : true)
(case ((((conj true) true) tt) tt)
(conj (λ (A : (Unv 0))
(λ (B : (Unv 0))
(λ (a : A)
(λ (b : B) a))))))
A))
(define sigma (term ((((((( true : (Unv 0)) T : true) false : (Unv 0)) equal : (Π (A : (Unv 0))
(Π (B : (Unv 0)) (Unv 0))))
nat : (Unv 0)) heap : (Unv 0)) pre : (Π (temp808 : heap) (Unv 0)))))
(define gamma (term ( temp863 : pre)))
(check-holds (wf ,sigma ))
(check-holds (wf ,sigma ,gamma))
(check-holds
(type-infer ,sigma ,gamma (Unv 0) t))
(check-holds
(type-infer ,sigma ,gamma pre t))
(check-holds
(type-infer ,sigma (,gamma tmp863 : pre) (Unv 0) (Unv 1)))
(check-holds
(type-infer ,sigma (,gamma x : false) (case x) t))
(check-true
(judgment-holds
(type-infer ,Σ4
(λ (A3 : (Unv 0)) (λ (B3 : (Unv 0)) (λ (c1 : ((and A3) B3))
(case c1
(conj (λ (A1 : (Unv 0)) (λ (B1 : (Unv 0)) (λ (a1 : A1) (λ (b1 : B1) a1)))))))))
t) t))))
;; This module just provide module language sugar over the redex model.
;; TODO: Strip to racket/base as much as possible.
;; TODO: Remove trace,pretty, debugging stuff
(module sugar racket
(require
racket/trace
racket/pretty
(submod ".." core)
redex/reduction-semantics
racket/provide-syntax
(for-syntax
(except-in racket import)
syntax/parse
racket/pretty
racket/trace
racket/syntax
(except-in racket/provide-transform export)
racket/require-transform
(except-in (submod ".." core) remove)
redex/reduction-semantics))
(provide
;; Basic syntax
for-syntax
only-in
all-defined-out
rename-in
#%module-begin
begin
(rename-out
[dep-module+ module+]
[dep-provide provide]
[dep-require require]
[dep-lambda lambda]
[dep-lambda λ]
[dep-app #%app]
[dep-fix fix]
[dep-forall forall]
[dep-forall ]
[dep-inductive data]
[dep-case case]
[dep-var #%top]
; [dep-datum #%datum]
[dep-define define])
Type
;; DYI syntax extension
define-syntax
begin-for-syntax
(for-syntax (all-from-out syntax/parse))
syntax-case
syntax-rules
define-syntax-rule
(for-syntax (all-from-out racket))
;; reflection
(for-syntax
cur-expand
type-infer/syn
type-check/syn?
normalize/syn)
run)
(begin-for-syntax
(current-trace-notify
(parameterize ([pretty-print-depth #f]
[pretty-print-columns 'infinity])
(lambda (x)
(pretty-display x)
(newline))))
(current-trace-print-args
(let ([cwtpr (current-trace-print-args)])
(lambda (s l kw l2 n)
(cwtpr s (map (lambda (x)
(if (syntax? x)
(cons 'syntax (syntax->datum x))
x)) l) kw l2 n))))
(current-trace-print-results
(let ([cwtpr (current-trace-print-results)])
(lambda (s l n)
(cwtpr s (map (lambda (x) (if (syntax? x) (cons 'syntax (syntax->datum x)) x)) l) n)))))
(begin-for-syntax
;; TODO: Gamma and Sigma seem to get reset inside a module+
(define gamma
(make-parameter (term )
(lambda (x)
(unless (Γ? x)
(error 'core-error "We built a bad gamma ~s" x))
x)))
(define sigma
(make-parameter (term )
(lambda (x)
(unless (Σ? x)
(error 'core-error "We built a bad sigma ~s" x))
x)))
(define (extend-env/term env x t)
(term (,(env) ,x : ,t)))
(define (extend-env/term! env x t) (env (extend-env/term env x t)))
(define (extend-env/syn env x t)
(term (,(env) ,(syntax->datum x) : ,(cur->datum t))))
(define (extend-env/syn! env x t) (env (extend-env/syn env x t)))
(define bind-subst (make-parameter (list null null)))
(define (add-binding/term! x t)
(let ([vars (first (bind-subst))]
[exprs (second (bind-subst))])
(bind-subst (list (cons x vars) (cons t exprs)))))
;; TODO: Still absurdly slow. Probably doing n^2 checks of sigma and
;; gamma. And lookup on sigma, gamma are linear, so probably n^2 lookup time.
(define (type-infer/term t)
(let ([t (judgment-holds (type-infer ,(sigma) ,(gamma) ,t t_0) t_0)])
(and (pair? t) (car t))))
(define (type-check/term? e t)
(and (judgment-holds (type-check ,(sigma) ,(gamma) ,e ,t)) #t))
(define (syntax->curnel-syntax syn) (denote syn (cur->datum syn)))
(define (denote syn t)
(quasisyntax/loc
syn
(term (reduce (subst-all #,(datum->syntax syn t) #,(first (bind-subst)) #,(second (bind-subst)))))))
;; TODO: Blanket disarming is probably a bad idea.
(define orig-insp (variable-reference->module-declaration-inspector
(#%variable-reference)))
(define (disarm syn) (syntax-disarm syn orig-insp))
;; Locally expand everything down to core forms.
(define (core-expand syn)
(disarm
(local-expand syn 'expression
(append (syntax-e #'(term reduce subst-all dep-var #%app λ Π μ case
Unv #%datum))))))
;; Only type-check at the top-level, to prevent exponential
;; type-checking. Redex is expensive enough.
;; TODO: This results in less good error messages. Add an
;; algorithm to find the smallest ill-typed term.
(define inner-expand? (make-parameter #f))
;; Expand a piece of syntax into a curnel redex term
(define (cur->datum syn)
;; Main loop; avoid type
(define reified-term
(parameterize ([inner-expand? #t])
(let cur->datum ([syn syn])
(syntax-parse (core-expand syn)
#:literals (term reduce #%app subst-all)
#:datum-literals (case Π λ μ : Unv)
[x:id (syntax->datum #'x)]
[(subst-all e _ _) (syntax->datum #'e)]
[(reduce e) (cur->datum #'e)]
[(term e) (cur->datum #'e)]
[(Unv i) (term (Unv ,(syntax->datum #'i)))]
;; TODO: should really check that b is one of the binders
;; Maybe make a syntax class for the binders, core forms,
;; etc.
[(b:id (x:id : t) e)
(let* ([x (syntax->datum #'x)]
[t (cur->datum #'t)]
[e (parameterize ([gamma (extend-env/term gamma x t)])
(cur->datum #'e))])
(term (,(syntax->datum #'b) (,x : ,t) ,e)))]
[(case e (ec eb) ...)
(term (case ,(cur->datum #'e)
,@(map (lambda (c b) `(,c ,(cur->datum b)))
(syntax->datum #'(ec ...))
(syntax->list #'(eb ...)))))]
[(#%app e1 e2)
(term (,(cur->datum #'e1) ,(cur->datum #'e2)))]))))
(unless (and inner-expand? (type-infer/term reified-term))
;; TODO: is this really a syntax error?
(raise-syntax-error 'cur "term is ill-typed:"
(begin (printf "Sigma: ~s~nGamma: ~s~n" (sigma) (gamma))
reified-term)
syn))
reified-term)
;; Reflection tools
(define (normalize/syn syn)
(denote syn (term (reduce (subst-all ,(cur->datum syn) ,(first (bind-subst)) ,(second (bind-subst)))))))
(define (run-cur->datum syn)
(cur->datum (normalize/syn syn)))
;; TODO: OOps, type-infer doesn't return a cur term but a redex term
;; wrapped in syntax bla. This is bad.
(define (type-infer/syn syn)
(let ([t (type-infer/term (run-cur->datum syn))])
(and t (datum->syntax syn t))))
(define (type-check/syn? syn type)
(type-check/term? (run-cur->datum syn) (run-cur->datum type)))
;; Takes a Cur term syn and an arbitrary number of identifiers ls. The cur term is
;; expanded until expansion reaches a Curnel form, or one of the
;; identifiers in ls.
(define (cur-expand syn . ls)
(disarm (local-expand syn 'expression
(append (syntax-e #'(Type dep-inductive dep-case dep-lambda dep-app
dep-fix dep-forall dep-var))
ls)))))
;; TODO: OOps, run doesn't return a cur term but a redex term
;; wrapped in syntax bla. This is bad.
(define-syntax (run syn)
(syntax-case syn ()
[(_ expr) (normalize/syn #'expr)]))
;; -----------------------------------------------------------------
;; Require/provide macros
;; TODO: This is code some of the most hacky awful code I've ever
;; written. But it works.
(begin-for-syntax
(define envs (list #'(void)))
(define (cur-identifier-bound? id)
(let ([x (syntax->datum id)])
(and (x? x)
(or (term (lookup ,(gamma) ,x))
(term (lookup ,(sigma) ,x))))))
(define (filter-cur-exports syn modes)
(partition (compose cur-identifier-bound? export-local-id)
(apply append (map (lambda (e) (expand-export e modes))
(syntax->list syn))))))
(define-syntax extend-env-and-provide
(make-provide-transformer
(lambda (syn modes)
(syntax-case syn ()
[(_ e ...)
(let-values ([(cur ~cur) (filter-cur-exports #'(e ...) modes)])
(set! envs (for/list ([e cur])
(let* ([x (syntax->datum (export-local-id e))]
[t (type-infer/term x)]
[env (if (term (lookup ,(gamma) ,x)) #'gamma #'sigma)])
#`(extend-env/term! #,env #,(export-out-sym e) #,t))))
~cur)]))))
(define-syntax (export-envs syn)
(syntax-case syn ()
[(_ gamma-out sigma-out bind-out)
#`(begin-for-syntax
(define gamma-out (term #,(gamma)))
(define sigma-out (term #,(sigma)))
(define bind-out '#,(bind-subst)))]))
;; TODO: This can only handle a single provide form, otherwise
;; generates multiple *-out
(define-syntax (dep-provide syn)
(syntax-case syn ()
[(_ e ...)
(begin
;; TODO: Ignoring the built envs above, for now
;; The local-lift export seems to get executed before the
;; filtered environment is built.
;; TODO: rename out will need to rename variables in gamma and
;; sigma.
(syntax-local-lift-module-end-declaration
#`(export-envs gamma-out sigma-out bind-out))
#`(provide (extend-env-and-provide e ...)
(for-syntax gamma-out sigma-out bind-out)))]))
(begin-for-syntax
(define out-gammas #`())
(define out-sigmas #`())
(define out-binds #`())
(define gn 0)
(define sn 0)
(define bn 0)
(define (filter-cur-imports syn)
(for/fold ([imports '()]
[sources '()])
([req-spec (syntax->list syn)])
(let-values ([(more-imports more-sources) (expand-import req-spec)])
(values (for/fold ([imports imports])
([imp more-imports])
(cond
[(equal? (import-src-sym imp) 'gamma-out)
(let ([new-id (format-id (import-orig-stx imp)
"gamma-out~a" gn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! gn (add1 gn))
(set! out-gammas
#`(#,@out-gammas (gamma (term (append-env
,(gamma)
,#,new-id)))))
(cons (struct-copy import imp [local-id new-id])
imports))]
;; TODO: Many shared code between these two clauses
[(equal? (import-src-sym imp) 'sigma-out)
(let ([new-id (format-id (import-orig-stx imp)
"sigma-out~a" sn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! sn (add1 sn))
(set! out-sigmas
#`(#,@out-sigmas (sigma (term (append-env
,(sigma)
,#,new-id)))))
(cons (struct-copy import imp [local-id new-id])
imports))]
;; TODO: Many shared code between these two clauses
[(equal? (import-src-sym imp) 'bind-out)
(let ([new-id (format-id (import-orig-stx imp)
"bind-out~a" bn)])
;; TODO: Fewer set!s
;; TODO: Do not DIY gensym
(set! bn (add1 bn))
(set! out-binds
#`(#,@out-binds (bind-subst (list (append
(first #,new-id)
(first (bind-subst)))
(append
(second #,new-id)
(second (bind-subst)))))))
(cons (struct-copy import imp [local-id new-id])
imports))]
[else (cons imp imports)]))
(append sources more-sources))))))
(define-syntax extend-env-and-require
(make-require-transformer (lambda (syn)
(syntax-case syn ()
[(_ e ...) (filter-cur-imports #'(e ...))]))))
;; TODO: rename in will need to rename variables in gamma and
;; sigma.
(define-syntax (import-envs syn)
(syntax-case syn ()
[(_) #`(begin-for-syntax #,@out-gammas #,@out-sigmas
#,@out-binds)]))
(define-syntax (dep-require syn)
(syntax-case syn ()
[(_ e ...)
#`(begin
(require (extend-env-and-require e ...))
(import-envs))]))
(define-syntax (dep-module+ syn)
(syntax-case syn ()
[(_ name body ...)
#`(module+ name
(begin-for-syntax
(gamma (term #,(gamma)))
(sigma (term #,(sigma)))
(bind-subst '#,(bind-subst)))
body ...)]))
;; -----------------------------------------------------------------
;; Core wrapper macros
;;
;; TODO: Can these be simplified further?
;; TODO: Can we make core-expand some kind of parameter that is only
;; to ensure type-checking is only done at the outermost level, and
;; not in the main loop?
#;(define-syntax (dep-datum syn) (denote #'syn))
(define-syntax (dep-lambda syn)
(syntax-case syn (:)
[(_ (x : t) e) (syntax->curnel-syntax #`(λ (x : t) e))]))
(define-syntax (dep-app syn)
(syntax-case syn ()
[(_ e1 e2) (syntax->curnel-syntax #`(#%app e1 e2))]))
(define-syntax (dep-case syn)
(syntax-case syn ()
[(_ e ...) (syntax->curnel-syntax #`(case e ...))]))
(define-syntax (dep-forall syn)
(syntax-case syn (:)
[(_ (x : t) e) (syntax->curnel-syntax #`(Π (x : t) e))]))
(define-syntax (Type syn)
(syntax-case syn ()
[(_ i) (syntax->curnel-syntax #'(Unv i))]
[_ #'(Type 0)]))
(define-syntax (dep-fix syn)
(syntax-case syn (:)
[(_ (x : t) e) (syntax->curnel-syntax #`(μ (x : t) e))]))
(define-syntax (dep-inductive syn)
(syntax-case syn (:)
[(_ i : ti (x1 : t1) ...)
(begin
(extend-env/syn! sigma #'i #'ti)
(for ([x (syntax->list #`(x1 ...))]
[t (syntax->list #`(t1 ...))])
(extend-env/syn! sigma x t))
#'(void))]))
;; TODO: Not sure if this is the correct behavior for #%top
(define-syntax (dep-var syn)
(syntax-case syn ()
[(_ . id) #`(term (reduce id))]))
;; TODO: Syntax-parse
(define-syntax (dep-define syn)
(syntax-case syn (:)
[(_ (name (x : t)) e)
#'(dep-define name (dep-lambda (x : t) e))]
[(_ id e)
;; TODO: Can't actually run programs until I do something about
;; #'e. Maybe denote final terms into Racket. Or keep an
;; environment and have denote do a giant substitution
(let ([e (cur->datum #'e)]
[id (syntax->datum #'id)])
(extend-env/term! gamma id (type-infer/term e))
(add-binding/term! id e)
#'(void))])))
(require (rename-in 'sugar [module+ dep-module+]))
(provide (rename-out [dep-module+ module+]) (all-from-out 'sugar))
(module+ test
(require (submod ".." core test)))