envlang-csharp/Parser.cs

77 lines
3.8 KiB
C#

using System;
using System.Text;
using System.Collections.Generic;
using System.Collections.Immutable;
using System.Linq;
using Immutable;
using S = Lexer.S;
using Lexeme = Lexer.Lexeme;
using static Global;
using PrecedenceDAG = System.Collections.Immutable.ImmutableDictionary<string, Parser.DAGNode>;
public static partial class Parser {
public static PrecedenceDAG DefaultPrecedenceDAG = new PrecedenceDAG();
public static DAGNode With(DAGNode node, Operator @operator) {
var newNode = @operator.fixity.Match(
Closed: () => node.lens.closed.Cons(@operator),
InfixLeftAssociative: () => node.lens.infixLeftAssociative.Cons(@operator),
InfixRightAssociative: () => node.lens.infixRightAssociative.Cons(@operator),
InfixNonAssociative: () => node.lens.infixNonAssociative.Cons(@operator),
Prefix: () => node.lens.prefix.Cons(@operator),
Postfix: () => node.lens.postfix.Cons(@operator),
Terminal: () => node.lens.terminal.Cons(@operator)
);
// op.fixity, parts, holes
throw new NotImplementedException();
}
public static PrecedenceDAG With(PrecedenceDAG precedenceDAG, Operator @operator) {
precedenceDAG.lens(@operator.precedenceGroup);
/*precedenceDAG.update(
dagNode => dagNode.Add(@operator)
);*/
throw new NotImplementedException();
}
public static void DagToGrammar(DAGNode precedenceDAG) {
}
public static void RecursiveDescent(IEnumerable<Lexeme> e) {
}
public static Ast.Expr Parse(string source) {
return Lexer.Lex(source)
.SelectMany(lexeme =>
lexeme.state.Match(
Int: () => Ast.Expr.Int(Int32.Parse(lexeme.lexeme)).Singleton(),
String: () => Ast.Expr.String(lexeme.lexeme).Singleton(),
Space: () => Enumerable.Empty<Ast.Expr>(), // ignore
End: () => Enumerable.Empty<Ast.Expr>(),
Decimal: () => Enumerable.Empty<Ast.Expr>(),
StringOpen: () => Enumerable.Empty<Ast.Expr>(),
StringClose: () => Enumerable.Empty<Ast.Expr>()
)
)
.Single()
.ElseThrow(() => new ParserErrorException(
"empty file or more than one expression in file."));
}
}
// Notes:
// (a, b, c) is parsed as (expr (paren (expr comma (expr a) (expr comma (expr b) (expr c))))) where expr is a run-time wrapper allowing e.g. passing an explicit environment or (useful in this case) distinguish between a tuple-value referenced by c and a paren expression. In contrast, (a, (b, c)) is parsed as (expr (paren (expr comma (expr a) (expr paren (expr comma (expr b) (expr c))))))
// (a < b <= c < d > e) is parsed similarly as the sequence of commas, allowing the comparison operators to compare their predecessor instead of the boolean output value.
// ("if" condition "then" clause) returns a boolean-like value, indicating what the original condition was. It's as simple as (operator ("if" condition "then" clause) = real_if condition real_then { clause with condition_was = true } real_else { condition_was = false }). (ifthen "else" clause) is just a binary operator.
// It is also possible to have the "else" operator taks an AST as its left operand, and inspect it to extract and rewrite the "if".
// -3 is recognized by the lexer, but -x is not allowed. Otherwise f -x is ambiguous, could be f (-x) or (f) - (x)
// relaxed unicity: the symbols must not appear in other operators of the same namespace nor as the closing bracket symbols which delimit the uses of this namespace in closed operators. Rationale: once the closing bracket is known, if the entire sub-expression doesn't include that bracket then the parser can fast-forward until the closing bracket, only caring about matching open and close symbols which may delimit sub-expressions with different namespaces, and know that whatever's inside is unambiguous.