Just about to remove "x"
This commit is contained in:
parent
49c96a8c68
commit
400f7bf47c
397
envlang.rkt
Normal file
397
envlang.rkt
Normal file
|
@ -0,0 +1,397 @@
|
|||
#lang racket
|
||||
|
||||
#|
|
||||
;; Syntax of the language:
|
||||
;;
|
||||
;; Plain λ-calculus:
|
||||
;; x,y,z ::= variable name Variable
|
||||
;; e ::= (λ x e) Abstraction (lambda)
|
||||
;; | (e₁ e₂) Application
|
||||
;; | x variable reference
|
||||
;;
|
||||
;; Plain λ-calculus + laziness:
|
||||
;; e ::= …
|
||||
;; | (#%app e₁ e₂) Sugar application
|
||||
;;
|
||||
;; Translation to λ-calculus
|
||||
;; (#%app e₁ e₂) => ((e₁ env) (λ _ e₂))
|
||||
;;
|
||||
;; Plain λ-calculus + continuations:
|
||||
;; e ::= (λ k x e) Abstraction (lambda)
|
||||
;; | (call/prompt stack-frame-name e₁ continuation e₂) Primitive application
|
||||
;; | x variable reference
|
||||
;; | (#%app e₁ e₂) Sugar application
|
||||
;; | (#%lam x e) Sugar lambda
|
||||
;;
|
||||
;; (#%app e₁ e₂) => (call/cc (λ (k) (call/prompt "stack frame" e₁ k e₂))
|
||||
|
||||
(f e) => (λ kont . (eval-f k=(λ res-f (eval-e k=(λ res-e (res-f res-e k=kont))))))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
;; translation rules
|
||||
x => (λ k . k x)
|
||||
(λ x e) => (λ k . k (λ (k' x) . [[e]] k' ))
|
||||
(f arg) => (λ k . k ( [[f]] (λ fval . [[arg]] (λ argval . fval k argval) )))
|
||||
|
||||
eval k x => k x
|
||||
eval k (λ x e) => can't reduce further
|
||||
eval k (f arg) => (eval f) then (eval arg) then (eval k (fval argval))
|
||||
|
||||
|
||||
;; Plain λ-calculus + continuations:
|
||||
;; e ::= (λ k x e) Abstraction (lambda)
|
||||
;; | (e₁ k e₂) Primitive application
|
||||
;; | x variable reference
|
||||
;; | (#%app e₁ e₂) Sugar application is call/cc
|
||||
|
||||
eval ((λ k x e) kont param) => e[x := param, k := kont]
|
||||
eval (#%app f param) => (call/cc f param) => (f current-continuation param)
|
||||
|
||||
location of expr current-continuation
|
||||
(λ k x _) k
|
||||
|
||||
(_ k e₂) (λ outer-continuation evaled-f (f k e₂))
|
||||
(e₁ _ e₂) ??
|
||||
(e₁ k _) (λ outer-continuation result (e₁ k result))
|
||||
|
||||
|
||||
(#%app _ e₂) Sugar application is call/cc
|
||||
(#%app e₁ _) Sugar application is call/cc
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
;; Plain λ-calculus + continuations:
|
||||
;; e ::= (λ k=x₁ x₂ e) Abstraction (lambda), takes a continuation
|
||||
;; | (e₁ k=e₂ e₃) Raw aplication
|
||||
;; | x variable reference
|
||||
;; | (#%app e₁ e₂) Sugar application
|
||||
;;
|
||||
;; Evaluation rules:
|
||||
;; eval env ((λ k=x₂ x₃ e₁) k=e₂ e₃) => eval env[x₂↦e₂][x₃↦e₃] e₁
|
||||
;; x => env[x]
|
||||
;; ((#%app e₁ e₂) k=e' e'') =>
|
||||
;; (e' k=(#%app e₁ e₂) e'') =>
|
||||
;; (e' k=e'' (#%app e₁ e₂)) => (e₁ k=(λ arg k=? (e' k=e'' arg)) e₂)
|
||||
;;
|
||||
;; (#%app f (#%app g x)) => (g k=f x)
|
||||
;; (f (g (h x))) => ((g f) (h x)) => (h (g f) x)
|
||||
|
||||
;; λk.x => k x
|
||||
;; λk.λx.e => k (λk λk' (#%app e k))
|
||||
;;
|
||||
;; Plain lambda-calculus + first-class environments:
|
||||
;; "x" ::= "x","y","z"… String
|
||||
;; e ::= (λ env arg e) Abstraction (lambda) which
|
||||
;; * an environment (map from strings to values)
|
||||
;; * takes an argument always named arg which is not added to the env
|
||||
;; | (e env e) Application
|
||||
;; | env the env of the innermost lambda containing this expression
|
||||
;; | arg the arg of the innermost lambda containing this expression
|
||||
;; prim ::=
|
||||
;; | get Get variable from environment, type is (→ Environment → String Any)
|
||||
;; | add Extend environment with new binding, type is (→ Environment String (→ _Environment Any Environment)))
|
||||
;;
|
||||
;; Translation to plain lambda-calculus:
|
||||
;; (λ env arg e) => (λ arg (λ env e))
|
||||
;; (e₁ env e₂) => ((e₁ env) e₂)
|
||||
;; env => env
|
||||
;; arg => arg
|
||||
;; get => primitive "get" from an immutable name↦val mapping (could be implemented in plain lambda-calculus)
|
||||
;; add => primitive "add" to an immutable name↦val mapping (could be implemented in plain lambda-calculus)
|
||||
;;
|
||||
;; With laziness:
|
||||
;; (e₁ env e₂) => ((e₁ env) (λ env (λ _ e₂)))
|
||||
;;
|
||||
;; With continuations
|
||||
;; (e₁ env e₂) => ((e₁ env) (λ env (λ _ e₂)))
|
||||
;; (f (g x)) => (g k=f x)
|
||||
;;
|
||||
;; With #%app
|
||||
;;
|
||||
|#
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
;; "x" ::= "x","y","z"… String
|
||||
;; e ::= (-λ -env -arg -k e) Abstraction (lambda) which takes
|
||||
;; * an environment always named -env (not in the -env)
|
||||
;; * a promise for an argument always named -arg (not in the -env)
|
||||
;; * a continuation always named -k (not in the -env)
|
||||
;; | (v e-env e-arg e-k) Tail call
|
||||
;; | (v e-env () e-k) Forcing a promise
|
||||
;; | (v () e-ret ()) Calling a continuation
|
||||
;; | -env the -env
|
||||
;; | -arg the -arg of the innermost lambda
|
||||
;; | -k the continuation of the innermost lambda
|
||||
;; | (-get e-env e-str) Get variable from environment
|
||||
;; | (-add e-env e-str e-val) Extend environment with new binding
|
||||
|
||||
|
||||
#|
|
||||
(λ -env -arg -k
|
||||
((get -env "1+") (-add -env "foo" 42) -arg -k))
|
||||
|
||||
(λ -env -arg -k
|
||||
(let (["env2" (-add -env "foo" 42)])
|
||||
((get -env "1+") (get -env "env2") -arg -k)))
|
||||
|
||||
(define -lambda '…)
|
||||
|#
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#;(
|
||||
;; lambda calculus:
|
||||
v ::= (λ x e)
|
||||
|| "str"
|
||||
|| 0
|
||||
e ::= v
|
||||
|| x
|
||||
|| (e e)
|
||||
|
||||
;; reduction:
|
||||
redex continuation frames
|
||||
(((λ x (λ y x)) 1) (inc 1)) _
|
||||
=> ((λ x (λ y x)) 1) _ (_ (inc 1))
|
||||
=> (λ y 1) _ (_ (inc 1))
|
||||
=> ( (λ y 1) (inc 1)) _
|
||||
=> (inc 1) _ ((λ y 1) _ )
|
||||
=> 2 _ ((λ y 1) _ )
|
||||
=> ( (λ y 1) 2 ) _
|
||||
=> 1 _
|
||||
|
||||
;; state of evaluation:
|
||||
redex = (v1 v2)
|
||||
continuation = (λ result e)
|
||||
)
|
||||
|
||||
|
||||
#;(
|
||||
;; Using explicit closures:
|
||||
v ::= (λ […] x e)
|
||||
|| "str"
|
||||
|| 0
|
||||
e ::= v
|
||||
|| (λ ?? x e)
|
||||
|| x
|
||||
|| (e e)
|
||||
|
||||
|
||||
;; Rules:
|
||||
rule name environment redex continuation frames
|
||||
=> environment′ redex′ continuation frames′
|
||||
|
||||
APP [E] ((λ [E′] x e) v) …
|
||||
=> [E′,x=v] e …
|
||||
|
||||
CAPTURE [E] (λ ?? x e) …
|
||||
=> [E] (λ [E] x e) …
|
||||
|
||||
APP-F [E] (e-f e-arg) …
|
||||
=> [E] e-f … E,(_ e-arg)
|
||||
|
||||
APP-ARG [E] (v-f e-arg) …
|
||||
=> [E] e-arg … E,(v-f _)
|
||||
|
||||
CONTINUE-F [E] v-f … E′,(_ e-arg)
|
||||
=> [E′] (v-f e-arg) …
|
||||
|
||||
CONTINUE-ARG [E] v-arg … E′,(v-f _) Optimization: [],(v-f _)
|
||||
=> [E′] (v-f v-arg) …
|
||||
|
||||
|
||||
;; Reduction example:
|
||||
env redex continuation frames rule to use
|
||||
[inc=…] (((λ ?? x (λ ?? y x)) 1) (inc 1)) … […],_ APP-F
|
||||
=> [inc=…] ((λ ?? x (λ ?? y x)) 1) … […],_ [inc=…],(_ (inc 1)) APP-F
|
||||
=> [inc=…] (λ ?? x (λ ?? y x)) … […],_ [inc=…],(_ (inc 1)) [inc=…],(_ 1) CAPTURE
|
||||
=> [inc=…] (λ [] x (λ ?? y x)) … […],_ [inc=…],(_ (inc 1)) [inc=…],(_ 1) CONTINUE-F
|
||||
=> [inc=…] ((λ [] x (λ ?? y x)) 1) … […],_ [inc=…],(_ (inc 1)) APP-ARG
|
||||
=> [inc=…] 1 … […],_ [inc=…],(_ (inc 1)) [inc=…],((λ [] x (λ ?? y x)) _) CONTINUE-ARG
|
||||
=> [inc=…] ((λ [] x (λ ?? y x)) 1) … […],_ [inc=…],(_ (inc 1)) APP
|
||||
=> [inc=…,x=1] (λ ?? y x) … […],_ [inc=…],(_ (inc 1)) CAPTURE
|
||||
=> [inc=…,x=1] (λ [x=1] y x) … […],_ [inc=…],(_ (inc 1)) CONTINUE-F
|
||||
=> [inc=…] ( (λ [x=1] y x) (inc 1)) … […],_ APP-ARG
|
||||
=> [inc=…] (inc 1) … […],_ [inc=…],((λ [x=1] y x) _) APP-F
|
||||
=> [inc=…] inc … […],_ [inc=…],((λ [x=1] y x) _) [inc=…],(_ 1) GETVAR
|
||||
=> [inc=…] … … […],_ [inc=…],((λ [x=1] y x) _) [inc=…],(_ 1) CONTINUE-F
|
||||
=> [inc=…] (… 1) … […],_ [inc=…],((λ [x=1] y x) _) APP-ARG
|
||||
=> [inc=…] 1 … […],_ [inc=…],((λ [x=1] y x) _) [inc=…],(… _) CONTINUE-ARG
|
||||
=> [inc=…] (… 1) … […],_ [inc=…],((λ [x=1] y x) _) APP
|
||||
…
|
||||
=> [inc=…] 2 … […],_ [inc=…],((λ [x=1] y x) _) CONTINUE-ARG
|
||||
=> [inc=…] ( (λ [x=1] y x) 2 ) … […],_ APP
|
||||
=> [inc=…,x=1,y=2] x … […],_ GETVAR
|
||||
=> [inc=…,x=1,y=2] 2 … […],_ CONTINUE-?
|
||||
=> […] 2 … …
|
||||
|
||||
)
|
||||
|
||||
|
||||
#;(
|
||||
;; Using first-class environments and lazy evaluations:
|
||||
;; λ, env, χ, get, push, drop are keywords
|
||||
;; v-env
|
||||
v ::= (\ env χ e) ;; open term, expects an env to close the term
|
||||
|| […] ;; mapping from names to values
|
||||
|| "str"
|
||||
|| 0
|
||||
|| get
|
||||
|| push
|
||||
|| pop
|
||||
e ::= v
|
||||
|| (@ e e e)
|
||||
|
||||
|
||||
TODO: instead of ad-hoc var-to-string conversion, use a functional env
|
||||
|
||||
;; Rules:
|
||||
rule name environment redex continuation frames
|
||||
=> environment′ redex′ continuation frames′
|
||||
|
||||
;; Primitive application
|
||||
APP env=E, χ=X (@ (\ env χ e) v-env (\ env () e-arg)) …
|
||||
=> env=v-env,χ=(\ env () e-arg) e …
|
||||
;;---------------------------------------------------------------------------------------------------------------------------
|
||||
;; Evaluation of sub-parts of an application
|
||||
APP-F env=E, χ=X (@ e-f e-env e-arg) …
|
||||
=> env=E, χ=X e-f … [env=E,χ=X],(@ _ e-env e-arg)
|
||||
|
||||
APP-ENV env=E, χ=X (@ e-f e-env e-arg) …
|
||||
=> env=E, χ=X e-env … [env=E,χ=X],(@ v-f _ e-arg)
|
||||
|
||||
APP-ARG env=E, χ=X (@ e-f e-env e-arg) …
|
||||
=> env=E, χ=X e-arg … [env=E,χ=X],(@ v-f v-env _ )
|
||||
;;---------------------------------------------------------------------------------------------------------------------------
|
||||
;; Syntactic sugar (insertion of #%app)
|
||||
SUGAR-APP env=E, χ=X (#%app e-f e-arg ) …
|
||||
=> env=E′, χ=X (@ (@ (get env "#%app")
|
||||
env
|
||||
(\ env () e-f))
|
||||
env
|
||||
(\ env () e-arg)) …
|
||||
;; defaults to:
|
||||
=> env=E′, χ=X (@ e-f env (\ env () e-arg)) …
|
||||
|
||||
SUGAR-LAM env=E, χ=X (λ var-name e) …
|
||||
=> env=E′, χ=X (#%app (#%app λ var-name) e) …
|
||||
;; defaults to:
|
||||
=> env=E′, χ=X (@ capture
|
||||
env
|
||||
(λ env χ (@ (λ env χ e)
|
||||
(add env "var-name" χ)
|
||||
χ)))
|
||||
;;---------------------------------------------------------------------------------------------------------------------------
|
||||
CAPTURE env=E, χ=X (@ capture v-env (λ env χ e)) …
|
||||
=> env=E, χ=X (λ env χ (@ (λ env χ e) v-env χ)) …
|
||||
|
||||
FORCE env=E, χ=(λ env () e-arg) (@ force v-env (λ env χ e)) …
|
||||
=> env=E, χ=() TODO … [env=E,χ=(λ env () e-arg)],???
|
||||
|
||||
CONTINUE-F [E] v-f … E′,(_ e-arg)
|
||||
=> [E′] (v-f e-arg) …
|
||||
|
||||
CONTINUE-ARG [E] v-arg … E′,(v-f _) Optimization: [],(v-f _)
|
||||
=> [E′] (v-f v-arg) …
|
||||
|
||||
)
|
||||
|
||||
|
||||
;; "x" ::= "x","y","z"… String
|
||||
;;
|
||||
;; v ::= (pλ -env e) promise: (unit) -> env -> α
|
||||
;; | (kλ -arg e) continuation: α -> void
|
||||
;; | (cλ -arg e) closure: (α -> β)
|
||||
;;
|
||||
;; e ::= (-λ -env -arg -k e) Abstraction (lambda) which takes
|
||||
;; * an environment always named -env (not in the -env)
|
||||
;; * a promise for an argument always named -arg (not in the -env)
|
||||
;; * a continuation always named -k (not in the -env)
|
||||
;; | (v e-env e-arg e-k) Tail call
|
||||
;; | (v e-env () e-k) Forcing a promise
|
||||
;; | (v () e-ret ()) Calling a continuation
|
||||
;; | -env the -env
|
||||
;; | -arg the -arg of the innermost lambda
|
||||
;; | -k the continuation of the innermost lambda
|
||||
;; | (-get e-env e-str) Get variable from environment
|
||||
;; | (-add e-env e-str e-val) Extend environment with new binding
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user