Just about to remove "x"

This commit is contained in:
Suzanne Soy 2021-03-15 02:46:32 +00:00
parent 49c96a8c68
commit 400f7bf47c

397
envlang.rkt Normal file
View File

@ -0,0 +1,397 @@
#lang racket
#|
;; Syntax of the language:
;;
;; Plain λ-calculus:
;; x,y,z ::= variable name Variable
;; e ::= (λ x e) Abstraction (lambda)
;; | (e₁ e₂) Application
;; | x variable reference
;;
;; Plain λ-calculus + laziness:
;; e ::= …
;; | (#%app e₁ e₂) Sugar application
;;
;; Translation to λ-calculus
;; (#%app e₁ e₂) => ((e₁ env) (λ _ e₂))
;;
;; Plain λ-calculus + continuations:
;; e ::= (λ k x e) Abstraction (lambda)
;; | (call/prompt stack-frame-name e₁ continuation e₂) Primitive application
;; | x variable reference
;; | (#%app e₁ e₂) Sugar application
;; | (#%lam x e) Sugar lambda
;;
;; (#%app e₁ e₂) => (call/cc (λ (k) (call/prompt "stack frame" e₁ k e₂))
(f e) => (λ kont . (eval-f k=(λ res-f (eval-e k=(λ res-e (res-f res-e k=kont))))))
;; translation rules
x => (λ k . k x)
(λ x e) => (λ k . k (λ (k' x) . [[e]] k' ))
(f arg) => (λ k . k ( [[f]] (λ fval . [[arg]] (λ argval . fval k argval) )))
eval k x => k x
eval k (λ x e) => can't reduce further
eval k (f arg) => (eval f) then (eval arg) then (eval k (fval argval))
;; Plain λ-calculus + continuations:
;; e ::= (λ k x e) Abstraction (lambda)
;; | (e₁ k e₂) Primitive application
;; | x variable reference
;; | (#%app e₁ e₂) Sugar application is call/cc
eval ((λ k x e) kont param) => e[x := param, k := kont]
eval (#%app f param) => (call/cc f param) => (f current-continuation param)
location of expr current-continuation
(λ k x _) k
(_ k e₂) (λ outer-continuation evaled-f (f k e₂))
(e₁ _ e₂) ??
(e₁ k _) (λ outer-continuation result (e₁ k result))
(#%app _ e₂) Sugar application is call/cc
(#%app e₁ _) Sugar application is call/cc
;; Plain λ-calculus + continuations:
;; e ::= (λ k=x₁ x₂ e) Abstraction (lambda), takes a continuation
;; | (e₁ k=e₂ e₃) Raw aplication
;; | x variable reference
;; | (#%app e₁ e₂) Sugar application
;;
;; Evaluation rules:
;; eval env ((λ k=x₂ x₃ e₁) k=e₂ e₃) => eval env[x₂↦e₂][x₃↦e₃] e₁
;; x => env[x]
;; ((#%app e₁ e₂) k=e' e'') =>
;; (e' k=(#%app e₁ e₂) e'') =>
;; (e' k=e'' (#%app e₁ e₂)) => (e₁ k=(λ arg k=? (e' k=e'' arg)) e₂)
;;
;; (#%app f (#%app g x)) => (g k=f x)
;; (f (g (h x))) => ((g f) (h x)) => (h (g f) x)
;; λk.x => k x
;; λk.λx.e => k (λk λk' (#%app e k))
;;
;; Plain lambda-calculus + first-class environments:
;; "x" ::= "x","y","z"… String
;; e ::= (λ env arg e) Abstraction (lambda) which
;; * an environment (map from strings to values)
;; * takes an argument always named arg which is not added to the env
;; | (e env e) Application
;; | env the env of the innermost lambda containing this expression
;; | arg the arg of the innermost lambda containing this expression
;; prim ::=
;; | get Get variable from environment, type is (→ Environment → String Any)
;; | add Extend environment with new binding, type is (→ Environment String (→ _Environment Any Environment)))
;;
;; Translation to plain lambda-calculus:
;; (λ env arg e) => (λ arg (λ env e))
;; (e₁ env e₂) => ((e₁ env) e₂)
;; env => env
;; arg => arg
;; get => primitive "get" from an immutable name↦val mapping (could be implemented in plain lambda-calculus)
;; add => primitive "add" to an immutable name↦val mapping (could be implemented in plain lambda-calculus)
;;
;; With laziness:
;; (e₁ env e₂) => ((e₁ env) (λ env (λ _ e₂)))
;;
;; With continuations
;; (e₁ env e₂) => ((e₁ env) (λ env (λ _ e₂)))
;; (f (g x)) => (g k=f x)
;;
;; With #%app
;;
|#
;; "x" ::= "x","y","z"… String
;; e ::= (-λ -env -arg -k e) Abstraction (lambda) which takes
;; * an environment always named -env (not in the -env)
;; * a promise for an argument always named -arg (not in the -env)
;; * a continuation always named -k (not in the -env)
;; | (v e-env e-arg e-k) Tail call
;; | (v e-env () e-k) Forcing a promise
;; | (v () e-ret ()) Calling a continuation
;; | -env the -env
;; | -arg the -arg of the innermost lambda
;; | -k the continuation of the innermost lambda
;; | (-get e-env e-str) Get variable from environment
;; | (-add e-env e-str e-val) Extend environment with new binding
#|
(λ -env -arg -k
((get -env "1+") (-add -env "foo" 42) -arg -k))
(λ -env -arg -k
(let (["env2" (-add -env "foo" 42)])
((get -env "1+") (get -env "env2") -arg -k)))
(define -lambda ')
|#
#;(
;; lambda calculus:
v ::= (λ x e)
|| "str"
|| 0
e ::= v
|| x
|| (e e)
;; reduction:
redex continuation frames
(((λ x (λ y x)) 1) (inc 1)) _
=> ((λ x (λ y x)) 1) _ (_ (inc 1))
=> (λ y 1) _ (_ (inc 1))
=> ( (λ y 1) (inc 1)) _
=> (inc 1) _ ((λ y 1) _ )
=> 2 _ ((λ y 1) _ )
=> ( (λ y 1) 2 ) _
=> 1 _
;; state of evaluation:
redex = (v1 v2)
continuation = (λ result e)
)
#;(
;; Using explicit closures:
v ::= (λ [] x e)
|| "str"
|| 0
e ::= v
|| (λ ?? x e)
|| x
|| (e e)
;; Rules:
rule name environment redex continuation frames
=> environment redex continuation frames
APP [E] ((λ [E] x e) v)
=> [E,x=v] e
CAPTURE [E] (λ ?? x e)
=> [E] (λ [E] x e)
APP-F [E] (e-f e-arg)
=> [E] e-f E,(_ e-arg)
APP-ARG [E] (v-f e-arg)
=> [E] e-arg E,(v-f _)
CONTINUE-F [E] v-f E,(_ e-arg)
=> [E] (v-f e-arg)
CONTINUE-ARG [E] v-arg E,(v-f _) Optimization: [],(v-f _)
=> [E] (v-f v-arg)
;; Reduction example:
env redex continuation frames rule to use
[inc=…] (((λ ?? x (λ ?? y x)) 1) (inc 1)) [],_ APP-F
=> [inc=…] ((λ ?? x (λ ?? y x)) 1) [],_ [inc=…],(_ (inc 1)) APP-F
=> [inc=…] (λ ?? x (λ ?? y x)) [],_ [inc=…],(_ (inc 1)) [inc=…],(_ 1) CAPTURE
=> [inc=…] (λ [] x (λ ?? y x)) [],_ [inc=…],(_ (inc 1)) [inc=…],(_ 1) CONTINUE-F
=> [inc=…] ((λ [] x (λ ?? y x)) 1) [],_ [inc=…],(_ (inc 1)) APP-ARG
=> [inc=…] 1 [],_ [inc=…],(_ (inc 1)) [inc=…],((λ [] x (λ ?? y x)) _) CONTINUE-ARG
=> [inc=…] ((λ [] x (λ ?? y x)) 1) [],_ [inc=…],(_ (inc 1)) APP
=> [inc=…,x=1] (λ ?? y x) [],_ [inc=…],(_ (inc 1)) CAPTURE
=> [inc=…,x=1] (λ [x=1] y x) [],_ [inc=…],(_ (inc 1)) CONTINUE-F
=> [inc=…] ( (λ [x=1] y x) (inc 1)) [],_ APP-ARG
=> [inc=…] (inc 1) [],_ [inc=…],((λ [x=1] y x) _) APP-F
=> [inc=…] inc [],_ [inc=…],((λ [x=1] y x) _) [inc=…],(_ 1) GETVAR
=> [inc=…] [],_ [inc=…],((λ [x=1] y x) _) [inc=…],(_ 1) CONTINUE-F
=> [inc=…] ( 1) [],_ [inc=…],((λ [x=1] y x) _) APP-ARG
=> [inc=…] 1 [],_ [inc=…],((λ [x=1] y x) _) [inc=…],( _) CONTINUE-ARG
=> [inc=…] ( 1) [],_ [inc=…],((λ [x=1] y x) _) APP
=> [inc=…] 2 [],_ [inc=…],((λ [x=1] y x) _) CONTINUE-ARG
=> [inc=…] ( (λ [x=1] y x) 2 ) [],_ APP
=> [inc=…,x=1,y=2] x [],_ GETVAR
=> [inc=…,x=1,y=2] 2 [],_ CONTINUE-?
=> [] 2
)
#;(
;; Using first-class environments and lazy evaluations:
;; λ, env, χ, get, push, drop are keywords
;; v-env
v ::= (\ env χ e) ;; open term, expects an env to close the term
|| [] ;; mapping from names to values
|| "str"
|| 0
|| get
|| push
|| pop
e ::= v
|| (@ e e e)
TODO: instead of ad-hoc var-to-string conversion, use a functional env
;; Rules:
rule name environment redex continuation frames
=> environment redex continuation frames
;; Primitive application
APP env=E, χ=X (@ (\ env χ e) v-env (\ env () e-arg))
=> env=v-env,χ=(\ env () e-arg) e
;;---------------------------------------------------------------------------------------------------------------------------
;; Evaluation of sub-parts of an application
APP-F env=E, χ=X (@ e-f e-env e-arg)
=> env=E, χ=X e-f [env=E,χ=X],(@ _ e-env e-arg)
APP-ENV env=E, χ=X (@ e-f e-env e-arg)
=> env=E, χ=X e-env [env=E,χ=X],(@ v-f _ e-arg)
APP-ARG env=E, χ=X (@ e-f e-env e-arg)
=> env=E, χ=X e-arg [env=E,χ=X],(@ v-f v-env _ )
;;---------------------------------------------------------------------------------------------------------------------------
;; Syntactic sugar (insertion of #%app)
SUGAR-APP env=E, χ=X (#%app e-f e-arg )
=> env=E, χ=X (@ (@ (get env "#%app")
env
(\ env () e-f))
env
(\ env () e-arg))
;; defaults to:
=> env=E, χ=X (@ e-f env (\ env () e-arg))
SUGAR-LAM env=E, χ=X (λ var-name e)
=> env=E, χ=X (#%app (#%app λ var-name) e)
;; defaults to:
=> env=E, χ=X (@ capture
env
(λ env χ (@ (λ env χ e)
(add env "var-name" χ)
χ)))
;;---------------------------------------------------------------------------------------------------------------------------
CAPTURE env=E, χ=X (@ capture v-env (λ env χ e))
=> env=E, χ=X (λ env χ (@ (λ env χ e) v-env χ))
FORCE env=E, χ=(λ env () e-arg) (@ force v-env (λ env χ e))
=> env=E, χ=() TODO [env=E,χ=(λ env () e-arg)],???
CONTINUE-F [E] v-f E,(_ e-arg)
=> [E] (v-f e-arg)
CONTINUE-ARG [E] v-arg E,(v-f _) Optimization: [],(v-f _)
=> [E] (v-f v-arg)
)
;; "x" ::= "x","y","z"… String
;;
;; v ::= (pλ -env e) promise: (unit) -> env -> α
;; | (kλ -arg e) continuation: α -> void
;; | (cλ -arg e) closure: (α -> β)
;;
;; e ::= (-λ -env -arg -k e) Abstraction (lambda) which takes
;; * an environment always named -env (not in the -env)
;; * a promise for an argument always named -arg (not in the -env)
;; * a continuation always named -k (not in the -env)
;; | (v e-env e-arg e-k) Tail call
;; | (v e-env () e-k) Forcing a promise
;; | (v () e-ret ()) Calling a continuation
;; | -env the -env
;; | -arg the -arg of the innermost lambda
;; | -k the continuation of the innermost lambda
;; | (-get e-env e-str) Get variable from environment
;; | (-add e-env e-str e-val) Extend environment with new binding