Allow reusing EAX/OCB instances with the same key

This is useful for chunked encryption in draft04
This commit is contained in:
Daniel Huigens 2018-04-12 15:01:37 +02:00
parent e24b46192d
commit 2f849063f9
7 changed files with 352 additions and 328 deletions

View File

@ -47,79 +47,113 @@ class OMAC extends CMAC {
}
}
/**
* Encrypt plaintext input.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} key The encryption key
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
async function encrypt(cipher, plaintext, key, nonce, adata) {
if (cipher.substr(0, 3) !== 'aes') {
throw new Error('EAX mode supports only AES cipher');
class CTR {
constructor(key) {
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
this.key = webCrypto.importKey('raw', key, { name: 'AES-CTR', length: key.length * 8 }, false, ['encrypt']);
this.ctr = this.webCtr;
} else if (util.getNodeCrypto()) { // Node crypto library
this.key = new Buffer(key);
this.ctr = this.nodeCtr;
} else {
// asm.js fallback
this.key = key;
}
}
const omac = new OMAC(key);
const _nonce = omac.mac(zero, nonce);
const _adata = omac.mac(one, adata);
const ciphered = await CTR(plaintext, key, _nonce);
const _ciphered = omac.mac(two, ciphered);
const tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac.mac(*).length === tagLength.
return concat(ciphered, tag);
}
/**
* Decrypt ciphertext input.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} key The encryption key
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
async function decrypt(cipher, ciphertext, key, nonce, adata) {
if (cipher.substr(0, 3) !== 'aes') {
throw new Error('EAX mode supports only AES cipher');
webCtr(pt, iv) {
return this.key
.then(keyObj => webCrypto.encrypt({ name: 'AES-CTR', counter: iv, length: blockLength * 8 }, keyObj, pt))
.then(ct => new Uint8Array(ct));
}
if (ciphertext.length < tagLength) throw new Error('Invalid EAX ciphertext');
const ciphered = ciphertext.subarray(0, ciphertext.length - tagLength);
const tag = ciphertext.subarray(ciphertext.length - tagLength);
const omac = new OMAC(key);
const _nonce = omac.mac(zero, nonce);
const _adata = omac.mac(one, adata);
const _ciphered = omac.mac(two, ciphered);
const _tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac.mac(*).length === tagLength.
if (!util.equalsUint8Array(tag, _tag)) throw new Error('Authentication tag mismatch in EAX ciphertext');
const plaintext = await CTR(ciphered, key, _nonce);
return plaintext;
nodeCtr(pt, iv) {
pt = new Buffer(pt);
iv = new Buffer(iv);
const en = new nodeCrypto.createCipheriv('aes-' + (this.key.length * 8) + '-ctr', this.key, iv);
const ct = Buffer.concat([en.update(pt), en.final()]);
return Promise.resolve(new Uint8Array(ct));
}
ctr(pt, iv) {
return Promise.resolve(AES_CTR.encrypt(pt, this.key, iv));
}
}
class EAX {
/**
* Class to en/decrypt using EAX mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
constructor(cipher, key) {
if (cipher.substr(0, 3) !== 'aes') {
throw new Error('EAX mode supports only AES cipher');
}
const omac = new OMAC(key);
this.omac = omac.mac.bind(omac);
const ctr = new CTR(key);
this.ctr = ctr.ctr.bind(ctr);
}
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
async encrypt(plaintext, nonce, adata) {
const _nonce = this.omac(zero, nonce);
const _adata = this.omac(one, adata);
const ciphered = await this.ctr(plaintext, _nonce);
const _ciphered = this.omac(two, ciphered);
const tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
return concat(ciphered, tag);
}
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
async decrypt(ciphertext, nonce, adata) {
if (ciphertext.length < tagLength) throw new Error('Invalid EAX ciphertext');
const ciphered = ciphertext.subarray(0, ciphertext.length - tagLength);
const tag = ciphertext.subarray(ciphertext.length - tagLength);
const _nonce = this.omac(zero, nonce);
const _adata = this.omac(one, adata);
const _ciphered = this.omac(two, ciphered);
const _tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
if (!util.equalsUint8Array(tag, _tag)) throw new Error('Authentication tag mismatch in EAX ciphertext');
const plaintext = await this.ctr(ciphered, _nonce);
return plaintext;
}
}
/**
* Get EAX nonce as defined by {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.1|RFC4880bis-04, section 5.16.1}.
* @param {Uint8Array} iv The initialization vector (16 bytes)
* @param {Uint8Array} chunkIndex The chunk index (8 bytes)
*/
function getNonce(iv, chunkIndex) {
EAX.getNonce = function(iv, chunkIndex) {
const nonce = iv.slice();
for (let i = 0; i < chunkIndex.length; i++) {
nonce[8 + i] ^= chunkIndex[i];
}
return nonce;
}
export default {
blockLength,
ivLength,
encrypt,
decrypt,
getNonce
};
EAX.blockLength = blockLength;
EAX.ivLength = ivLength;
export default EAX;
//////////////////////////
// //
@ -135,27 +169,3 @@ function xor3(a, b, c) {
function concat(...arrays) {
return util.concatUint8Array(arrays);
}
function CTR(plaintext, key, iv) {
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
return webCtr(plaintext, key, iv);
} else if (util.getNodeCrypto()) { // Node crypto library
return nodeCtr(plaintext, key, iv);
} // asm.js fallback
return Promise.resolve(AES_CTR.encrypt(plaintext, key, iv));
}
function webCtr(pt, key, iv) {
return webCrypto.importKey('raw', key, { name: 'AES-CTR', length: key.length * 8 }, false, ['encrypt'])
.then(keyObj => webCrypto.encrypt({ name: 'AES-CTR', counter: iv, length: blockLength * 8 }, keyObj, pt))
.then(ct => new Uint8Array(ct));
}
function nodeCtr(pt, key, iv) {
pt = new Buffer(pt);
key = new Buffer(key);
iv = new Buffer(iv);
const en = new nodeCrypto.createCipheriv('aes-' + (key.length * 8) + '-ctr', key, iv);
const ct = Buffer.concat([en.update(pt), en.final()]);
return Promise.resolve(new Uint8Array(ct));
}

View File

@ -79,237 +79,247 @@ function double(S) {
const zeros_16 = zeros(16);
const one = new Uint8Array([1]);
function constructKeyVariables(cipher, key, text, adata) {
const aes = new ciphers[cipher](key);
const encipher = aes.encrypt.bind(aes);
const decipher = aes.decrypt.bind(aes);
const L_x = encipher(zeros_16);
const L_$ = double(L_x);
const L = [];
L[0] = double(L_$);
const max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
for (let i = 1; i <= max_ntz; i++) {
L[i] = double(L[i - 1]);
class OCB {
/**
* Class to en/decrypt using OCB mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
constructor(cipher, key) {
this.max_ntz = 0;
this.constructKeyVariables(cipher, key);
}
L.x = L_x;
L.$ = L_$;
constructKeyVariables(cipher, key) {
const aes = new ciphers[cipher](key);
const encipher = aes.encrypt.bind(aes);
const decipher = aes.decrypt.bind(aes);
return { encipher, decipher, L };
const L_x = encipher(zeros_16);
const L_$ = double(L_x);
const L = [];
L[0] = double(L_$);
L.x = L_x;
L.$ = L_$;
this.kv = { encipher, decipher, L };
}
extendKeyVariables(text, adata) {
const { L } = this.kv;
const max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
for (let i = this.max_ntz + 1; i <= max_ntz; i++) {
L[i] = double(L[i - 1]);
}
this.max_ntz = max_ntz;
}
hash(adata) {
if (!adata.length) {
// Fast path
return zeros_16;
}
const { encipher, L } = this.kv;
//
// Consider A as a sequence of 128-bit blocks
//
const m = adata.length >> 4;
const offset = zeros(16);
const sum = zeros(16);
for (let i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
set_xor(sum, encipher(xor(offset, adata)));
adata = adata.subarray(16);
}
//
// Process any final partial block; compute final hash value
//
if (adata.length) {
set_xor(offset, L.x);
const cipherInput = zeros(16);
cipherInput.set(adata, 0);
cipherInput[adata.length] = 0b10000000;
set_xor(cipherInput, offset);
set_xor(sum, encipher(cipherInput));
}
return sum;
}
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
async encrypt(plaintext, nonce, adata) {
//
// Consider P as a sequence of 128-bit blocks
//
const m = plaintext.length >> 4;
//
// Key-dependent variables
//
this.extendKeyVariables(plaintext, adata);
const { encipher, L } = this.kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const C = new Uint8Array(plaintext.length + tagLength);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
C.set(set_xor(encipher(xor(offset, plaintext)), offset), pos);
set_xor(checksum, plaintext);
plaintext = plaintext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (plaintext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
C.set(xor(plaintext, Pad), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(plaintext, 0);
xorInput[plaintext.length] = 0b10000000;
set_xor(checksum, xorInput);
pos += plaintext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), this.hash(adata));
//
// Assemble ciphertext
//
C.set(Tag, pos);
return C;
}
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
async decrypt(ciphertext, nonce, adata) {
//
// Consider C as a sequence of 128-bit blocks
//
const T = ciphertext.subarray(ciphertext.length - tagLength);
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
const m = ciphertext.length >> 4;
//
// Key-dependent variables
//
this.extendKeyVariables(ciphertext, adata);
const { encipher, decipher, L } = this.kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const P = new Uint8Array(ciphertext.length);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
P.set(set_xor(decipher(xor(offset, ciphertext)), offset), pos);
set_xor(checksum, P.subarray(pos));
ciphertext = ciphertext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (ciphertext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
P.set(xor(ciphertext, Pad), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(P.subarray(pos), 0);
xorInput[ciphertext.length] = 0b10000000;
set_xor(checksum, xorInput);
pos += ciphertext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), this.hash(adata));
//
// Check for validity and assemble plaintext
//
if (!util.equalsUint8Array(Tag, T)) {
throw new Error('Authentication tag mismatch in OCB ciphertext');
}
return P;
}
}
function hash(kv, key, adata) {
if (!adata.length) {
// Fast path
return zeros_16;
}
const { encipher, L } = kv;
//
// Consider A as a sequence of 128-bit blocks
//
const m = adata.length >> 4;
const offset = zeros(16);
const sum = zeros(16);
for (let i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
set_xor(sum, encipher(xor(offset, adata)));
adata = adata.subarray(16);
}
//
// Process any final partial block; compute final hash value
//
if (adata.length) {
set_xor(offset, L.x);
const cipherInput = zeros(16);
cipherInput.set(adata, 0);
cipherInput[adata.length] = 0b10000000;
set_xor(cipherInput, offset);
set_xor(sum, encipher(cipherInput));
}
return sum;
}
/**
* Encrypt plaintext input.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} key The encryption key
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
async function encrypt(cipher, plaintext, key, nonce, adata) {
//
// Consider P as a sequence of 128-bit blocks
//
const m = plaintext.length >> 4;
//
// Key-dependent variables
//
const kv = constructKeyVariables(cipher, key, plaintext, adata);
const { encipher, L } = kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const C = new Uint8Array(plaintext.length + tagLength);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
C.set(set_xor(encipher(xor(offset, plaintext)), offset), pos);
set_xor(checksum, plaintext);
plaintext = plaintext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (plaintext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
C.set(xor(plaintext, Pad), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(plaintext, 0);
xorInput[plaintext.length] = 0b10000000;
set_xor(checksum, xorInput);
pos += plaintext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), hash(kv, key, adata));
//
// Assemble ciphertext
//
C.set(Tag, pos);
return C;
}
/**
* Decrypt ciphertext input.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} key The encryption key
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
async function decrypt(cipher, ciphertext, key, nonce, adata) {
//
// Consider C as a sequence of 128-bit blocks
//
const T = ciphertext.subarray(ciphertext.length - tagLength);
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
const m = ciphertext.length >> 4;
//
// Key-dependent variables
//
const kv = constructKeyVariables(cipher, key, ciphertext, adata);
const { encipher, decipher, L } = kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const P = new Uint8Array(ciphertext.length);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
P.set(set_xor(decipher(xor(offset, ciphertext)), offset), pos);
set_xor(checksum, P.subarray(pos));
ciphertext = ciphertext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (ciphertext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
P.set(xor(ciphertext, Pad), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(P.subarray(pos), 0);
xorInput[ciphertext.length] = 0b10000000;
set_xor(checksum, xorInput);
pos += ciphertext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), hash(kv, key, adata));
//
// Check for validity and assemble plaintext
//
if (!util.equalsUint8Array(Tag, T)) {
throw new Error('Authentication tag mismatch in OCB ciphertext');
}
return P;
}
/**
* Get OCB nonce as defined by {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2|RFC4880bis-04, section 5.16.2}.
* @param {Uint8Array} iv The initialization vector (15 bytes)
* @param {Uint8Array} chunkIndex The chunk index (8 bytes)
*/
function getNonce(iv, chunkIndex) {
OCB.getNonce = function(iv, chunkIndex) {
const nonce = iv.slice();
for (let i = 0; i < chunkIndex.length; i++) {
nonce[7 + i] ^= chunkIndex[i];
}
return nonce;
}
export default {
blockLength,
ivLength,
encrypt,
decrypt,
getNonce
};
OCB.blockLength = blockLength;
OCB.ivLength = ivLength;
export default OCB;

View File

@ -211,7 +211,7 @@ SecretKey.prototype.encrypt = async function (passphrase) {
arr = [new Uint8Array([253, optionalFields.length])];
arr.push(optionalFields);
const mode = crypto[aead];
const encrypted = await mode.encrypt(symmetric, cleartext, key, iv.subarray(0, mode.ivLength), new Uint8Array());
const encrypted = await new mode(symmetric, key).encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array());
arr.push(util.writeNumber(encrypted.length, 4));
arr.push(encrypted);
} else {
@ -305,7 +305,7 @@ SecretKey.prototype.decrypt = async function (passphrase) {
if (aead) {
const mode = crypto[aead];
try {
cleartext = await mode.decrypt(symmetric, ciphertext, key, iv.subarray(0, mode.ivLength), new Uint8Array());
cleartext = await new mode(symmetric, key).decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array());
} catch(err) {
if (err.message.startsWith('Authentication tag mismatch')) {
throw new Error('Incorrect key passphrase: ' + err.message);

View File

@ -107,15 +107,16 @@ SymEncryptedAEADProtected.prototype.decrypt = async function (sessionKeyAlgorith
adataArray.set([0xC0 | this.tag, this.version, this.cipherAlgo, this.aeadAlgo, this.chunkSizeByte], 0);
adataView.setInt32(13 + 4, data.length - mode.blockLength); // Should be setInt64(13, ...)
const decryptedPromises = [];
const modeInstance = new mode(cipher, key);
for (let chunkIndex = 0; chunkIndex === 0 || data.length;) {
decryptedPromises.push(
mode.decrypt(cipher, data.subarray(0, chunkSize), key, mode.getNonce(this.iv, chunkIndexArray), adataArray)
modeInstance.decrypt(data.subarray(0, chunkSize), mode.getNonce(this.iv, chunkIndexArray), adataArray)
);
data = data.subarray(chunkSize);
adataView.setInt32(5 + 4, ++chunkIndex); // Should be setInt64(5, ...)
}
decryptedPromises.push(
mode.decrypt(cipher, authTag, key, mode.getNonce(this.iv, chunkIndexArray), adataTagArray)
modeInstance.decrypt(authTag, mode.getNonce(this.iv, chunkIndexArray), adataTagArray)
);
this.packets.read(util.concatUint8Array(await Promise.all(decryptedPromises)));
} else {
@ -148,9 +149,10 @@ SymEncryptedAEADProtected.prototype.encrypt = async function (sessionKeyAlgorith
adataArray.set([0xC0 | this.tag, this.version, this.cipherAlgo, this.aeadAlgo, this.chunkSizeByte], 0);
adataView.setInt32(13 + 4, data.length); // Should be setInt64(13, ...)
const encryptedPromises = [];
const modeInstance = new mode(sessionKeyAlgorithm, key);
for (let chunkIndex = 0; chunkIndex === 0 || data.length;) {
encryptedPromises.push(
mode.encrypt(sessionKeyAlgorithm, data.subarray(0, chunkSize), key, mode.getNonce(this.iv, chunkIndexArray), adataArray)
modeInstance.encrypt(data.subarray(0, chunkSize), mode.getNonce(this.iv, chunkIndexArray), adataArray)
);
// We take a chunk of data, encrypt it, and shift `data` to the
// next chunk. After the final chunk, we encrypt a final, empty
@ -159,7 +161,7 @@ SymEncryptedAEADProtected.prototype.encrypt = async function (sessionKeyAlgorith
adataView.setInt32(5 + 4, ++chunkIndex); // Should be setInt64(5, ...)
}
encryptedPromises.push(
mode.encrypt(sessionKeyAlgorithm, data, key, mode.getNonce(this.iv, chunkIndexArray), adataTagArray)
modeInstance.encrypt(data, mode.getNonce(this.iv, chunkIndexArray), adataTagArray)
);
this.encrypted = util.concatUint8Array(await Promise.all(encryptedPromises));
} else {

View File

@ -142,7 +142,7 @@ SymEncryptedSessionKey.prototype.decrypt = async function(passphrase) {
if (this.version === 5) {
const mode = crypto[this.aeadAlgorithm];
const adata = new Uint8Array([0xC0 | this.tag, this.version, enums.write(enums.symmetric, this.sessionKeyEncryptionAlgorithm), enums.write(enums.aead, this.aeadAlgorithm)]);
this.sessionKey = await mode.decrypt(algo, this.encrypted, key, this.iv, adata);
this.sessionKey = await new mode(algo, key).decrypt(this.encrypted, this.iv, adata);
} else if (this.encrypted !== null) {
const decrypted = crypto.cfb.normalDecrypt(algo, key, this.encrypted, null);
@ -182,7 +182,7 @@ SymEncryptedSessionKey.prototype.encrypt = async function(passphrase) {
const mode = crypto[this.aeadAlgorithm];
this.iv = await crypto.random.getRandomBytes(mode.ivLength); // generate new random IV
const adata = new Uint8Array([0xC0 | this.tag, this.version, enums.write(enums.symmetric, this.sessionKeyEncryptionAlgorithm), enums.write(enums.aead, this.aeadAlgorithm)]);
this.encrypted = await mode.encrypt(algo, this.sessionKey, key, this.iv, adata);
this.encrypted = await new mode(algo, key).encrypt(this.sessionKey, this.iv, adata);
} else {
const algo_enum = new Uint8Array([enums.write(enums.symmetric, this.sessionKeyAlgorithm)]);
const private_key = util.concatUint8Array([algo_enum, this.sessionKey]);

View File

@ -9,8 +9,6 @@ chai.use(require('chai-as-promised'));
const expect = chai.expect;
const eax = openpgp.crypto.eax;
function testAESEAX() {
it('Passes all test vectors', async function() {
var vectors = [
@ -96,28 +94,30 @@ function testAESEAX() {
headerBytes = openpgp.util.hex_to_Uint8Array(vec.header),
ctBytes = openpgp.util.hex_to_Uint8Array(vec.ct);
const eax = new openpgp.crypto.eax(cipher, keyBytes);
// encryption test
let ct = await eax.encrypt(cipher, msgBytes, keyBytes, nonceBytes, headerBytes);
let ct = await eax.encrypt(msgBytes, nonceBytes, headerBytes);
expect(openpgp.util.Uint8Array_to_hex(ct)).to.equal(vec.ct.toLowerCase());
// decryption test with verification
let pt = await eax.decrypt(cipher, ctBytes, keyBytes, nonceBytes, headerBytes);
let pt = await eax.decrypt(ctBytes, nonceBytes, headerBytes);
expect(openpgp.util.Uint8Array_to_hex(pt)).to.equal(vec.msg.toLowerCase());
// tampering detection test
ct = await eax.encrypt(cipher, msgBytes, keyBytes, nonceBytes, headerBytes);
ct = await eax.encrypt(msgBytes, nonceBytes, headerBytes);
ct[2] ^= 8;
pt = eax.decrypt(cipher, ct, keyBytes, nonceBytes, headerBytes);
pt = eax.decrypt(ct, nonceBytes, headerBytes);
await expect(pt).to.eventually.be.rejectedWith('Authentication tag mismatch in EAX ciphertext')
// testing without additional data
ct = await eax.encrypt(cipher, msgBytes, keyBytes, nonceBytes, new Uint8Array());
pt = await eax.decrypt(cipher, ct, keyBytes, nonceBytes, new Uint8Array());
ct = await eax.encrypt(msgBytes, nonceBytes, new Uint8Array());
pt = await eax.decrypt(ct, nonceBytes, new Uint8Array());
expect(openpgp.util.Uint8Array_to_hex(pt)).to.equal(vec.msg.toLowerCase());
// testing with multiple additional data
ct = await eax.encrypt(cipher, msgBytes, keyBytes, nonceBytes, openpgp.util.concatUint8Array([headerBytes, headerBytes, headerBytes]));
pt = await eax.decrypt(cipher, ct, keyBytes, nonceBytes, openpgp.util.concatUint8Array([headerBytes, headerBytes, headerBytes]));
ct = await eax.encrypt(msgBytes, nonceBytes, openpgp.util.concatUint8Array([headerBytes, headerBytes, headerBytes]));
pt = await eax.decrypt(ct, nonceBytes, openpgp.util.concatUint8Array([headerBytes, headerBytes, headerBytes]));
expect(openpgp.util.Uint8Array_to_hex(pt)).to.equal(vec.msg.toLowerCase());
}
});

View File

@ -9,8 +9,6 @@ chai.use(require('chai-as-promised'));
const expect = chai.expect;
const ocb = openpgp.crypto.ocb;
describe('Symmetric AES-OCB', function() {
it('Passes all test vectors', async function() {
const K = '000102030405060708090A0B0C0D0E0F';
@ -124,28 +122,30 @@ describe('Symmetric AES-OCB', function() {
headerBytes = openpgp.util.hex_to_Uint8Array(vec.A),
ctBytes = openpgp.util.hex_to_Uint8Array(vec.C);
const ocb = new openpgp.crypto.ocb(cipher, keyBytes);
// encryption test
let ct = await ocb.encrypt(cipher, msgBytes, keyBytes, nonceBytes, headerBytes);
let ct = await ocb.encrypt(msgBytes, nonceBytes, headerBytes);
expect(openpgp.util.Uint8Array_to_hex(ct)).to.equal(vec.C.toLowerCase());
// decryption test with verification
let pt = await ocb.decrypt(cipher, ctBytes, keyBytes, nonceBytes, headerBytes);
let pt = await ocb.decrypt(ctBytes, nonceBytes, headerBytes);
expect(openpgp.util.Uint8Array_to_hex(pt)).to.equal(vec.P.toLowerCase());
// tampering detection test
ct = await ocb.encrypt(cipher, msgBytes, keyBytes, nonceBytes, headerBytes);
ct = await ocb.encrypt(msgBytes, nonceBytes, headerBytes);
ct[2] ^= 8;
pt = ocb.decrypt(cipher, ct, keyBytes, nonceBytes, headerBytes);
pt = ocb.decrypt(ct, nonceBytes, headerBytes);
await expect(pt).to.eventually.be.rejectedWith('Authentication tag mismatch in OCB ciphertext')
// testing without additional data
ct = await ocb.encrypt(cipher, msgBytes, keyBytes, nonceBytes, new Uint8Array());
pt = await ocb.decrypt(cipher, ct, keyBytes, nonceBytes, new Uint8Array());
ct = await ocb.encrypt(msgBytes, nonceBytes, new Uint8Array());
pt = await ocb.decrypt(ct, nonceBytes, new Uint8Array());
expect(openpgp.util.Uint8Array_to_hex(pt)).to.equal(vec.P.toLowerCase());
// testing with multiple additional data
ct = await ocb.encrypt(cipher, msgBytes, keyBytes, nonceBytes, openpgp.util.concatUint8Array([headerBytes, headerBytes, headerBytes]));
pt = await ocb.decrypt(cipher, ct, keyBytes, nonceBytes, openpgp.util.concatUint8Array([headerBytes, headerBytes, headerBytes]));
ct = await ocb.encrypt(msgBytes, nonceBytes, openpgp.util.concatUint8Array([headerBytes, headerBytes, headerBytes]));
pt = await ocb.decrypt(ct, nonceBytes, openpgp.util.concatUint8Array([headerBytes, headerBytes, headerBytes]));
expect(openpgp.util.Uint8Array_to_hex(pt)).to.equal(vec.P.toLowerCase());
}
});
@ -162,19 +162,21 @@ describe('Symmetric AES-OCB', function() {
const K = new Uint8Array(KEYLEN / 8);
K[K.length - 1] = TAGLEN;
const ocb = new openpgp.crypto.ocb('aes' + KEYLEN, K);
const C = [];
let N;
for (let i = 0; i < 128; i++) {
const S = new Uint8Array(i);
N = openpgp.util.concatUint8Array([new Uint8Array(8), openpgp.util.writeNumber(3 * i + 1, 4)]);
C.push(await ocb.encrypt('aes' + KEYLEN, S, K, N, S));
C.push(await ocb.encrypt(S, N, S));
N = openpgp.util.concatUint8Array([new Uint8Array(8), openpgp.util.writeNumber(3 * i + 2, 4)]);
C.push(await ocb.encrypt('aes' + KEYLEN, S, K, N, new Uint8Array()));
C.push(await ocb.encrypt(S, N, new Uint8Array()));
N = openpgp.util.concatUint8Array([new Uint8Array(8), openpgp.util.writeNumber(3 * i + 3, 4)]);
C.push(await ocb.encrypt('aes' + KEYLEN, new Uint8Array(), K, N, S));
C.push(await ocb.encrypt(new Uint8Array(), N, S));
}
N = openpgp.util.concatUint8Array([new Uint8Array(8), openpgp.util.writeNumber(385, 4)]);
const output = await ocb.encrypt('aes' + KEYLEN, new Uint8Array(), K, N, openpgp.util.concatUint8Array(C));
const output = await ocb.encrypt(new Uint8Array(), N, openpgp.util.concatUint8Array(C));
expect(openpgp.util.Uint8Array_to_hex(output)).to.equal(outputs[KEYLEN].toLowerCase());
}
});