Native CMAC
This commit is contained in:
parent
6f2abdc2cf
commit
51d7860622
|
@ -1,21 +1,80 @@
|
|||
/**
|
||||
* @fileoverview This module implements AES-CMAC on top of
|
||||
* native AES-CBC using either the WebCrypto API or Node.js' crypto API.
|
||||
* @requires asmcrypto.js
|
||||
* @requires util
|
||||
* @module crypto/cmac
|
||||
*/
|
||||
|
||||
import { AES_CMAC } from 'asmcrypto.js/src/aes/cmac/cmac';
|
||||
import { AES_CBC } from 'asmcrypto.js/src/aes/cbc/exports';
|
||||
import util from '../util';
|
||||
|
||||
export default class CMAC extends AES_CMAC {
|
||||
constructor(key) {
|
||||
super(key);
|
||||
this._k = this.k.slice();
|
||||
}
|
||||
const webCrypto = util.getWebCryptoAll();
|
||||
const nodeCrypto = util.getNodeCrypto();
|
||||
const Buffer = util.getNodeBuffer();
|
||||
|
||||
mac(data) {
|
||||
if (this.result) {
|
||||
this.bufferLength = 0;
|
||||
this.k.set(this._k, 0);
|
||||
this.cbc.AES_reset(undefined, new Uint8Array(16), false);
|
||||
}
|
||||
return this.process(data).finish().result;
|
||||
|
||||
const blockLength = 16;
|
||||
|
||||
|
||||
function set_xor_r(S, T) {
|
||||
const offset = S.length - blockLength;
|
||||
for (let i = 0; i < blockLength; i++) {
|
||||
S[i + offset] ^= T[i];
|
||||
}
|
||||
return S;
|
||||
}
|
||||
|
||||
function mul2(data) {
|
||||
const t = data[0] & 0x80;
|
||||
for (let i = 0; i < 15; i++) {
|
||||
data[i] = (data[i] << 1) ^ ((data[i + 1] & 0x80) ? 1 : 0);
|
||||
}
|
||||
data[15] = (data[15] << 1) ^ (t ? 0x87 : 0);
|
||||
return data;
|
||||
}
|
||||
|
||||
const zeros_16 = new Uint8Array(16);
|
||||
|
||||
export default async function CMAC(key) {
|
||||
const cbc = await CBC(key);
|
||||
const padding = mul2(await cbc(zeros_16));
|
||||
const padding2 = mul2(padding.slice());
|
||||
|
||||
return async function(data) {
|
||||
return (await cbc(pad(data, padding, padding2))).subarray(-blockLength);
|
||||
};
|
||||
}
|
||||
|
||||
function pad(data, padding, padding2) {
|
||||
if (data.length % blockLength === 0) {
|
||||
return set_xor_r(data, padding);
|
||||
}
|
||||
const padded = new Uint8Array(data.length + (blockLength - data.length % blockLength));
|
||||
padded.set(data);
|
||||
padded[data.length] = 0b10000000;
|
||||
return set_xor_r(padded, padding2);
|
||||
}
|
||||
|
||||
async function CBC(key) {
|
||||
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
|
||||
key = await webCrypto.importKey('raw', key, { name: 'AES-CBC', length: key.length * 8 }, false, ['encrypt']);
|
||||
return async function(pt) {
|
||||
const ct = await webCrypto.encrypt({ name: 'AES-CBC', iv: zeros_16, length: blockLength * 8 }, key, pt);
|
||||
return new Uint8Array(ct).subarray(0, ct.byteLength - blockLength);
|
||||
};
|
||||
}
|
||||
if (util.getNodeCrypto()) { // Node crypto library
|
||||
key = new Buffer(key);
|
||||
return async function(pt) {
|
||||
pt = new Buffer(pt);
|
||||
const en = new nodeCrypto.createCipheriv('aes-' + (key.length * 8) + '-cbc', key, zeros_16);
|
||||
const ct = en.update(pt);
|
||||
return new Uint8Array(ct);
|
||||
};
|
||||
}
|
||||
// asm.js fallback
|
||||
return async function(pt) {
|
||||
return AES_CBC.encrypt(pt, key, false, zeros_16);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -41,98 +41,104 @@ const zero = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
|
|||
const one = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
|
||||
const two = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]);
|
||||
|
||||
class OMAC extends CMAC {
|
||||
mac(t, message) {
|
||||
return super.mac(concat(t, message));
|
||||
}
|
||||
async function OMAC(key) {
|
||||
const cmac = await CMAC(key);
|
||||
return function(t, message) {
|
||||
return cmac(concat(t, message));
|
||||
};
|
||||
}
|
||||
|
||||
class CTR {
|
||||
constructor(key) {
|
||||
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
|
||||
this.key = webCrypto.importKey('raw', key, { name: 'AES-CTR', length: key.length * 8 }, false, ['encrypt']);
|
||||
this.ctr = this.webCtr;
|
||||
} else if (util.getNodeCrypto()) { // Node crypto library
|
||||
this.key = new Buffer(key);
|
||||
this.ctr = this.nodeCtr;
|
||||
} else {
|
||||
// asm.js fallback
|
||||
this.key = key;
|
||||
}
|
||||
async function CTR(key) {
|
||||
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
|
||||
key = await webCrypto.importKey('raw', key, { name: 'AES-CTR', length: key.length * 8 }, false, ['encrypt']);
|
||||
return async function(pt, iv) {
|
||||
const ct = await webCrypto.encrypt({ name: 'AES-CTR', counter: iv, length: blockLength * 8 }, key, pt);
|
||||
return new Uint8Array(ct);
|
||||
};
|
||||
}
|
||||
|
||||
webCtr(pt, iv) {
|
||||
return this.key
|
||||
.then(keyObj => webCrypto.encrypt({ name: 'AES-CTR', counter: iv, length: blockLength * 8 }, keyObj, pt))
|
||||
.then(ct => new Uint8Array(ct));
|
||||
}
|
||||
|
||||
nodeCtr(pt, iv) {
|
||||
pt = new Buffer(pt);
|
||||
iv = new Buffer(iv);
|
||||
const en = new nodeCrypto.createCipheriv('aes-' + (this.key.length * 8) + '-ctr', this.key, iv);
|
||||
const ct = Buffer.concat([en.update(pt), en.final()]);
|
||||
return Promise.resolve(new Uint8Array(ct));
|
||||
}
|
||||
|
||||
ctr(pt, iv) {
|
||||
return Promise.resolve(AES_CTR.encrypt(pt, this.key, iv));
|
||||
if (util.getNodeCrypto()) { // Node crypto library
|
||||
key = new Buffer(key);
|
||||
return async function(pt, iv) {
|
||||
pt = new Buffer(pt);
|
||||
iv = new Buffer(iv);
|
||||
const en = new nodeCrypto.createCipheriv('aes-' + (key.length * 8) + '-ctr', key, iv);
|
||||
const ct = Buffer.concat([en.update(pt), en.final()]);
|
||||
return new Uint8Array(ct);
|
||||
};
|
||||
}
|
||||
// asm.js fallback
|
||||
return async function(pt, iv) {
|
||||
return AES_CTR.encrypt(pt, key, iv);
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
class EAX {
|
||||
/**
|
||||
* Class to en/decrypt using EAX mode.
|
||||
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
|
||||
* @param {Uint8Array} key The encryption key
|
||||
*/
|
||||
constructor(cipher, key) {
|
||||
if (cipher.substr(0, 3) !== 'aes') {
|
||||
throw new Error('EAX mode supports only AES cipher');
|
||||
/**
|
||||
* Class to en/decrypt using EAX mode.
|
||||
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
|
||||
* @param {Uint8Array} key The encryption key
|
||||
*/
|
||||
async function EAX(cipher, key) {
|
||||
if (cipher.substr(0, 3) !== 'aes') {
|
||||
throw new Error('EAX mode supports only AES cipher');
|
||||
}
|
||||
|
||||
const [
|
||||
omac,
|
||||
ctr
|
||||
] = await Promise.all([
|
||||
OMAC(key),
|
||||
CTR(key)
|
||||
]);
|
||||
|
||||
return {
|
||||
/**
|
||||
* Encrypt plaintext input.
|
||||
* @param {Uint8Array} plaintext The cleartext input to be encrypted
|
||||
* @param {Uint8Array} nonce The nonce (16 bytes)
|
||||
* @param {Uint8Array} adata Associated data to sign
|
||||
* @returns {Promise<Uint8Array>} The ciphertext output
|
||||
*/
|
||||
encrypt: async function(plaintext, nonce, adata) {
|
||||
const [
|
||||
_nonce,
|
||||
_adata
|
||||
] = await Promise.all([
|
||||
omac(zero, nonce),
|
||||
omac(one, adata)
|
||||
]);
|
||||
const ciphered = await ctr(plaintext, _nonce);
|
||||
const _ciphered = await omac(two, ciphered);
|
||||
const tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
|
||||
return concat(ciphered, tag);
|
||||
},
|
||||
|
||||
/**
|
||||
* Decrypt ciphertext input.
|
||||
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
|
||||
* @param {Uint8Array} nonce The nonce (16 bytes)
|
||||
* @param {Uint8Array} adata Associated data to verify
|
||||
* @returns {Promise<Uint8Array>} The plaintext output
|
||||
*/
|
||||
decrypt: async function(ciphertext, nonce, adata) {
|
||||
if (ciphertext.length < tagLength) throw new Error('Invalid EAX ciphertext');
|
||||
const ciphered = ciphertext.subarray(0, ciphertext.length - tagLength);
|
||||
const tag = ciphertext.subarray(ciphertext.length - tagLength);
|
||||
const [
|
||||
_nonce,
|
||||
_adata,
|
||||
_ciphered
|
||||
] = await Promise.all([
|
||||
omac(zero, nonce),
|
||||
omac(one, adata),
|
||||
omac(two, ciphered)
|
||||
]);
|
||||
const _tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
|
||||
if (!util.equalsUint8Array(tag, _tag)) throw new Error('Authentication tag mismatch in EAX ciphertext');
|
||||
const plaintext = await ctr(ciphered, _nonce);
|
||||
return plaintext;
|
||||
}
|
||||
|
||||
const omac = new OMAC(key);
|
||||
this.omac = omac.mac.bind(omac);
|
||||
const ctr = new CTR(key);
|
||||
this.ctr = ctr.ctr.bind(ctr);
|
||||
}
|
||||
|
||||
/**
|
||||
* Encrypt plaintext input.
|
||||
* @param {Uint8Array} plaintext The cleartext input to be encrypted
|
||||
* @param {Uint8Array} nonce The nonce (16 bytes)
|
||||
* @param {Uint8Array} adata Associated data to sign
|
||||
* @returns {Promise<Uint8Array>} The ciphertext output
|
||||
*/
|
||||
async encrypt(plaintext, nonce, adata) {
|
||||
const _nonce = this.omac(zero, nonce);
|
||||
const _adata = this.omac(one, adata);
|
||||
const ciphered = await this.ctr(plaintext, _nonce);
|
||||
const _ciphered = this.omac(two, ciphered);
|
||||
const tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
|
||||
return concat(ciphered, tag);
|
||||
}
|
||||
|
||||
/**
|
||||
* Decrypt ciphertext input.
|
||||
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
|
||||
* @param {Uint8Array} nonce The nonce (16 bytes)
|
||||
* @param {Uint8Array} adata Associated data to verify
|
||||
* @returns {Promise<Uint8Array>} The plaintext output
|
||||
*/
|
||||
async decrypt(ciphertext, nonce, adata) {
|
||||
if (ciphertext.length < tagLength) throw new Error('Invalid EAX ciphertext');
|
||||
const ciphered = ciphertext.subarray(0, ciphertext.length - tagLength);
|
||||
const tag = ciphertext.subarray(ciphertext.length - tagLength);
|
||||
const _nonce = this.omac(zero, nonce);
|
||||
const _adata = this.omac(one, adata);
|
||||
const _ciphered = this.omac(two, ciphered);
|
||||
const _tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
|
||||
if (!util.equalsUint8Array(tag, _tag)) throw new Error('Authentication tag mismatch in EAX ciphertext');
|
||||
const plaintext = await this.ctr(ciphered, _nonce);
|
||||
return plaintext;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -79,18 +79,19 @@ function double(S) {
|
|||
const zeros_16 = zeros(16);
|
||||
const one = new Uint8Array([1]);
|
||||
|
||||
class OCB {
|
||||
/**
|
||||
* Class to en/decrypt using OCB mode.
|
||||
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
|
||||
* @param {Uint8Array} key The encryption key
|
||||
*/
|
||||
constructor(cipher, key) {
|
||||
this.max_ntz = 0;
|
||||
this.constructKeyVariables(cipher, key);
|
||||
}
|
||||
/**
|
||||
* Class to en/decrypt using OCB mode.
|
||||
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
|
||||
* @param {Uint8Array} key The encryption key
|
||||
*/
|
||||
async function OCB(cipher, key) {
|
||||
|
||||
constructKeyVariables(cipher, key) {
|
||||
let max_ntz = 0;
|
||||
let kv;
|
||||
|
||||
constructKeyVariables(cipher, key);
|
||||
|
||||
function constructKeyVariables(cipher, key) {
|
||||
const aes = new ciphers[cipher](key);
|
||||
const encipher = aes.encrypt.bind(aes);
|
||||
const decipher = aes.decrypt.bind(aes);
|
||||
|
@ -104,25 +105,25 @@ class OCB {
|
|||
L.x = L_x;
|
||||
L.$ = L_$;
|
||||
|
||||
this.kv = { encipher, decipher, L };
|
||||
kv = { encipher, decipher, L };
|
||||
}
|
||||
|
||||
extendKeyVariables(text, adata) {
|
||||
const { L } = this.kv;
|
||||
const max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
|
||||
for (let i = this.max_ntz + 1; i <= max_ntz; i++) {
|
||||
function extendKeyVariables(text, adata) {
|
||||
const { L } = kv;
|
||||
const new_max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
|
||||
for (let i = max_ntz + 1; i <= new_max_ntz; i++) {
|
||||
L[i] = double(L[i - 1]);
|
||||
}
|
||||
this.max_ntz = max_ntz;
|
||||
max_ntz = new_max_ntz;
|
||||
}
|
||||
|
||||
hash(adata) {
|
||||
function hash(adata) {
|
||||
if (!adata.length) {
|
||||
// Fast path
|
||||
return zeros_16;
|
||||
}
|
||||
|
||||
const { encipher, L } = this.kv;
|
||||
const { encipher, L } = kv;
|
||||
|
||||
//
|
||||
// Consider A as a sequence of 128-bit blocks
|
||||
|
@ -155,154 +156,156 @@ class OCB {
|
|||
}
|
||||
|
||||
|
||||
/**
|
||||
* Encrypt plaintext input.
|
||||
* @param {Uint8Array} plaintext The cleartext input to be encrypted
|
||||
* @param {Uint8Array} nonce The nonce (15 bytes)
|
||||
* @param {Uint8Array} adata Associated data to sign
|
||||
* @returns {Promise<Uint8Array>} The ciphertext output
|
||||
*/
|
||||
async encrypt(plaintext, nonce, adata) {
|
||||
//
|
||||
// Consider P as a sequence of 128-bit blocks
|
||||
//
|
||||
const m = plaintext.length >> 4;
|
||||
return {
|
||||
/**
|
||||
* Encrypt plaintext input.
|
||||
* @param {Uint8Array} plaintext The cleartext input to be encrypted
|
||||
* @param {Uint8Array} nonce The nonce (15 bytes)
|
||||
* @param {Uint8Array} adata Associated data to sign
|
||||
* @returns {Promise<Uint8Array>} The ciphertext output
|
||||
*/
|
||||
encrypt: async function(plaintext, nonce, adata) {
|
||||
//
|
||||
// Consider P as a sequence of 128-bit blocks
|
||||
//
|
||||
const m = plaintext.length >> 4;
|
||||
|
||||
//
|
||||
// Key-dependent variables
|
||||
//
|
||||
this.extendKeyVariables(plaintext, adata);
|
||||
const { encipher, L } = this.kv;
|
||||
//
|
||||
// Key-dependent variables
|
||||
//
|
||||
extendKeyVariables(plaintext, adata);
|
||||
const { encipher, L } = kv;
|
||||
|
||||
//
|
||||
// Nonce-dependent and per-encryption variables
|
||||
//
|
||||
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
|
||||
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
|
||||
const bottom = Nonce[15] & 0b111111;
|
||||
Nonce[15] &= 0b11000000;
|
||||
const Ktop = encipher(Nonce);
|
||||
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
|
||||
// Offset_0 = Stretch[1+bottom..128+bottom]
|
||||
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
|
||||
const checksum = zeros(16);
|
||||
//
|
||||
// Nonce-dependent and per-encryption variables
|
||||
//
|
||||
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
|
||||
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
|
||||
const bottom = Nonce[15] & 0b111111;
|
||||
Nonce[15] &= 0b11000000;
|
||||
const Ktop = encipher(Nonce);
|
||||
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
|
||||
// Offset_0 = Stretch[1+bottom..128+bottom]
|
||||
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
|
||||
const checksum = zeros(16);
|
||||
|
||||
const C = new Uint8Array(plaintext.length + tagLength);
|
||||
const C = new Uint8Array(plaintext.length + tagLength);
|
||||
|
||||
//
|
||||
// Process any whole blocks
|
||||
//
|
||||
let i;
|
||||
let pos = 0;
|
||||
for (i = 0; i < m; i++) {
|
||||
set_xor(offset, L[ntz(i + 1)]);
|
||||
C.set(set_xor(encipher(xor(offset, plaintext)), offset), pos);
|
||||
set_xor(checksum, plaintext);
|
||||
//
|
||||
// Process any whole blocks
|
||||
//
|
||||
let i;
|
||||
let pos = 0;
|
||||
for (i = 0; i < m; i++) {
|
||||
set_xor(offset, L[ntz(i + 1)]);
|
||||
C.set(set_xor(encipher(xor(offset, plaintext)), offset), pos);
|
||||
set_xor(checksum, plaintext);
|
||||
|
||||
plaintext = plaintext.subarray(16);
|
||||
pos += 16;
|
||||
plaintext = plaintext.subarray(16);
|
||||
pos += 16;
|
||||
}
|
||||
|
||||
//
|
||||
// Process any final partial block and compute raw tag
|
||||
//
|
||||
if (plaintext.length) {
|
||||
set_xor(offset, L.x);
|
||||
const Pad = encipher(offset);
|
||||
C.set(xor(plaintext, Pad), pos);
|
||||
|
||||
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
|
||||
const xorInput = zeros(16);
|
||||
xorInput.set(plaintext, 0);
|
||||
xorInput[plaintext.length] = 0b10000000;
|
||||
set_xor(checksum, xorInput);
|
||||
pos += plaintext.length;
|
||||
}
|
||||
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), hash(adata));
|
||||
|
||||
//
|
||||
// Assemble ciphertext
|
||||
//
|
||||
C.set(Tag, pos);
|
||||
return C;
|
||||
},
|
||||
|
||||
|
||||
/**
|
||||
* Decrypt ciphertext input.
|
||||
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
|
||||
* @param {Uint8Array} nonce The nonce (15 bytes)
|
||||
* @param {Uint8Array} adata Associated data to verify
|
||||
* @returns {Promise<Uint8Array>} The plaintext output
|
||||
*/
|
||||
decrypt: async function(ciphertext, nonce, adata) {
|
||||
//
|
||||
// Consider C as a sequence of 128-bit blocks
|
||||
//
|
||||
const T = ciphertext.subarray(ciphertext.length - tagLength);
|
||||
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
|
||||
const m = ciphertext.length >> 4;
|
||||
|
||||
//
|
||||
// Key-dependent variables
|
||||
//
|
||||
extendKeyVariables(ciphertext, adata);
|
||||
const { encipher, decipher, L } = kv;
|
||||
|
||||
//
|
||||
// Nonce-dependent and per-encryption variables
|
||||
//
|
||||
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
|
||||
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
|
||||
const bottom = Nonce[15] & 0b111111;
|
||||
Nonce[15] &= 0b11000000;
|
||||
const Ktop = encipher(Nonce);
|
||||
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
|
||||
// Offset_0 = Stretch[1+bottom..128+bottom]
|
||||
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
|
||||
const checksum = zeros(16);
|
||||
|
||||
const P = new Uint8Array(ciphertext.length);
|
||||
|
||||
//
|
||||
// Process any whole blocks
|
||||
//
|
||||
let i;
|
||||
let pos = 0;
|
||||
for (i = 0; i < m; i++) {
|
||||
set_xor(offset, L[ntz(i + 1)]);
|
||||
P.set(set_xor(decipher(xor(offset, ciphertext)), offset), pos);
|
||||
set_xor(checksum, P.subarray(pos));
|
||||
|
||||
ciphertext = ciphertext.subarray(16);
|
||||
pos += 16;
|
||||
}
|
||||
|
||||
//
|
||||
// Process any final partial block and compute raw tag
|
||||
//
|
||||
if (ciphertext.length) {
|
||||
set_xor(offset, L.x);
|
||||
const Pad = encipher(offset);
|
||||
P.set(xor(ciphertext, Pad), pos);
|
||||
|
||||
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
|
||||
const xorInput = zeros(16);
|
||||
xorInput.set(P.subarray(pos), 0);
|
||||
xorInput[ciphertext.length] = 0b10000000;
|
||||
set_xor(checksum, xorInput);
|
||||
pos += ciphertext.length;
|
||||
}
|
||||
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), hash(adata));
|
||||
|
||||
//
|
||||
// Check for validity and assemble plaintext
|
||||
//
|
||||
if (!util.equalsUint8Array(Tag, T)) {
|
||||
throw new Error('Authentication tag mismatch in OCB ciphertext');
|
||||
}
|
||||
return P;
|
||||
}
|
||||
|
||||
//
|
||||
// Process any final partial block and compute raw tag
|
||||
//
|
||||
if (plaintext.length) {
|
||||
set_xor(offset, L.x);
|
||||
const Pad = encipher(offset);
|
||||
C.set(xor(plaintext, Pad), pos);
|
||||
|
||||
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
|
||||
const xorInput = zeros(16);
|
||||
xorInput.set(plaintext, 0);
|
||||
xorInput[plaintext.length] = 0b10000000;
|
||||
set_xor(checksum, xorInput);
|
||||
pos += plaintext.length;
|
||||
}
|
||||
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), this.hash(adata));
|
||||
|
||||
//
|
||||
// Assemble ciphertext
|
||||
//
|
||||
C.set(Tag, pos);
|
||||
return C;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Decrypt ciphertext input.
|
||||
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
|
||||
* @param {Uint8Array} nonce The nonce (15 bytes)
|
||||
* @param {Uint8Array} adata Associated data to verify
|
||||
* @returns {Promise<Uint8Array>} The plaintext output
|
||||
*/
|
||||
async decrypt(ciphertext, nonce, adata) {
|
||||
//
|
||||
// Consider C as a sequence of 128-bit blocks
|
||||
//
|
||||
const T = ciphertext.subarray(ciphertext.length - tagLength);
|
||||
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
|
||||
const m = ciphertext.length >> 4;
|
||||
|
||||
//
|
||||
// Key-dependent variables
|
||||
//
|
||||
this.extendKeyVariables(ciphertext, adata);
|
||||
const { encipher, decipher, L } = this.kv;
|
||||
|
||||
//
|
||||
// Nonce-dependent and per-encryption variables
|
||||
//
|
||||
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
|
||||
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
|
||||
const bottom = Nonce[15] & 0b111111;
|
||||
Nonce[15] &= 0b11000000;
|
||||
const Ktop = encipher(Nonce);
|
||||
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
|
||||
// Offset_0 = Stretch[1+bottom..128+bottom]
|
||||
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
|
||||
const checksum = zeros(16);
|
||||
|
||||
const P = new Uint8Array(ciphertext.length);
|
||||
|
||||
//
|
||||
// Process any whole blocks
|
||||
//
|
||||
let i;
|
||||
let pos = 0;
|
||||
for (i = 0; i < m; i++) {
|
||||
set_xor(offset, L[ntz(i + 1)]);
|
||||
P.set(set_xor(decipher(xor(offset, ciphertext)), offset), pos);
|
||||
set_xor(checksum, P.subarray(pos));
|
||||
|
||||
ciphertext = ciphertext.subarray(16);
|
||||
pos += 16;
|
||||
}
|
||||
|
||||
//
|
||||
// Process any final partial block and compute raw tag
|
||||
//
|
||||
if (ciphertext.length) {
|
||||
set_xor(offset, L.x);
|
||||
const Pad = encipher(offset);
|
||||
P.set(xor(ciphertext, Pad), pos);
|
||||
|
||||
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
|
||||
const xorInput = zeros(16);
|
||||
xorInput.set(P.subarray(pos), 0);
|
||||
xorInput[ciphertext.length] = 0b10000000;
|
||||
set_xor(checksum, xorInput);
|
||||
pos += ciphertext.length;
|
||||
}
|
||||
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), this.hash(adata));
|
||||
|
||||
//
|
||||
// Check for validity and assemble plaintext
|
||||
//
|
||||
if (!util.equalsUint8Array(Tag, T)) {
|
||||
throw new Error('Authentication tag mismatch in OCB ciphertext');
|
||||
}
|
||||
return P;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -211,7 +211,8 @@ SecretKey.prototype.encrypt = async function (passphrase) {
|
|||
arr = [new Uint8Array([253, optionalFields.length])];
|
||||
arr.push(optionalFields);
|
||||
const mode = crypto[aead];
|
||||
const encrypted = await new mode(symmetric, key).encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array());
|
||||
const modeInstance = await mode(symmetric, key);
|
||||
const encrypted = await modeInstance.encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array());
|
||||
arr.push(util.writeNumber(encrypted.length, 4));
|
||||
arr.push(encrypted);
|
||||
} else {
|
||||
|
@ -305,7 +306,8 @@ SecretKey.prototype.decrypt = async function (passphrase) {
|
|||
if (aead) {
|
||||
const mode = crypto[aead];
|
||||
try {
|
||||
cleartext = await new mode(symmetric, key).decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array());
|
||||
const modeInstance = await mode(symmetric, key);
|
||||
cleartext = await modeInstance.decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array());
|
||||
} catch(err) {
|
||||
if (err.message.startsWith('Authentication tag mismatch')) {
|
||||
throw new Error('Incorrect key passphrase: ' + err.message);
|
||||
|
|
|
@ -107,7 +107,7 @@ SymEncryptedAEADProtected.prototype.decrypt = async function (sessionKeyAlgorith
|
|||
adataArray.set([0xC0 | this.tag, this.version, this.cipherAlgo, this.aeadAlgo, this.chunkSizeByte], 0);
|
||||
adataView.setInt32(13 + 4, data.length - mode.blockLength); // Should be setInt64(13, ...)
|
||||
const decryptedPromises = [];
|
||||
const modeInstance = new mode(cipher, key);
|
||||
const modeInstance = await mode(cipher, key);
|
||||
for (let chunkIndex = 0; chunkIndex === 0 || data.length;) {
|
||||
decryptedPromises.push(
|
||||
modeInstance.decrypt(data.subarray(0, chunkSize), mode.getNonce(this.iv, chunkIndexArray), adataArray)
|
||||
|
@ -149,7 +149,7 @@ SymEncryptedAEADProtected.prototype.encrypt = async function (sessionKeyAlgorith
|
|||
adataArray.set([0xC0 | this.tag, this.version, this.cipherAlgo, this.aeadAlgo, this.chunkSizeByte], 0);
|
||||
adataView.setInt32(13 + 4, data.length); // Should be setInt64(13, ...)
|
||||
const encryptedPromises = [];
|
||||
const modeInstance = new mode(sessionKeyAlgorithm, key);
|
||||
const modeInstance = await mode(sessionKeyAlgorithm, key);
|
||||
for (let chunkIndex = 0; chunkIndex === 0 || data.length;) {
|
||||
encryptedPromises.push(
|
||||
modeInstance.encrypt(data.subarray(0, chunkSize), mode.getNonce(this.iv, chunkIndexArray), adataArray)
|
||||
|
|
|
@ -142,7 +142,8 @@ SymEncryptedSessionKey.prototype.decrypt = async function(passphrase) {
|
|||
if (this.version === 5) {
|
||||
const mode = crypto[this.aeadAlgorithm];
|
||||
const adata = new Uint8Array([0xC0 | this.tag, this.version, enums.write(enums.symmetric, this.sessionKeyEncryptionAlgorithm), enums.write(enums.aead, this.aeadAlgorithm)]);
|
||||
this.sessionKey = await new mode(algo, key).decrypt(this.encrypted, this.iv, adata);
|
||||
const modeInstance = await mode(algo, key);
|
||||
this.sessionKey = await modeInstance.decrypt(this.encrypted, this.iv, adata);
|
||||
} else if (this.encrypted !== null) {
|
||||
const decrypted = crypto.cfb.normalDecrypt(algo, key, this.encrypted, null);
|
||||
|
||||
|
@ -182,7 +183,8 @@ SymEncryptedSessionKey.prototype.encrypt = async function(passphrase) {
|
|||
const mode = crypto[this.aeadAlgorithm];
|
||||
this.iv = await crypto.random.getRandomBytes(mode.ivLength); // generate new random IV
|
||||
const adata = new Uint8Array([0xC0 | this.tag, this.version, enums.write(enums.symmetric, this.sessionKeyEncryptionAlgorithm), enums.write(enums.aead, this.aeadAlgorithm)]);
|
||||
this.encrypted = await new mode(algo, key).encrypt(this.sessionKey, this.iv, adata);
|
||||
const modeInstance = await mode(algo, key);
|
||||
this.encrypted = await modeInstance.encrypt(this.sessionKey, this.iv, adata);
|
||||
} else {
|
||||
const algo_enum = new Uint8Array([enums.write(enums.symmetric, this.sessionKeyAlgorithm)]);
|
||||
const private_key = util.concatUint8Array([algo_enum, this.sessionKey]);
|
||||
|
|
|
@ -94,7 +94,7 @@ function testAESEAX() {
|
|||
headerBytes = openpgp.util.hex_to_Uint8Array(vec.header),
|
||||
ctBytes = openpgp.util.hex_to_Uint8Array(vec.ct);
|
||||
|
||||
const eax = new openpgp.crypto.eax(cipher, keyBytes);
|
||||
const eax = await openpgp.crypto.eax(cipher, keyBytes);
|
||||
|
||||
// encryption test
|
||||
let ct = await eax.encrypt(msgBytes, nonceBytes, headerBytes);
|
||||
|
|
|
@ -122,7 +122,7 @@ describe('Symmetric AES-OCB', function() {
|
|||
headerBytes = openpgp.util.hex_to_Uint8Array(vec.A),
|
||||
ctBytes = openpgp.util.hex_to_Uint8Array(vec.C);
|
||||
|
||||
const ocb = new openpgp.crypto.ocb(cipher, keyBytes);
|
||||
const ocb = await openpgp.crypto.ocb(cipher, keyBytes);
|
||||
|
||||
// encryption test
|
||||
let ct = await ocb.encrypt(msgBytes, nonceBytes, headerBytes);
|
||||
|
@ -162,7 +162,7 @@ describe('Symmetric AES-OCB', function() {
|
|||
const K = new Uint8Array(KEYLEN / 8);
|
||||
K[K.length - 1] = TAGLEN;
|
||||
|
||||
const ocb = new openpgp.crypto.ocb('aes' + KEYLEN, K);
|
||||
const ocb = await openpgp.crypto.ocb('aes' + KEYLEN, K);
|
||||
|
||||
const C = [];
|
||||
let N;
|
||||
|
|
Loading…
Reference in New Issue
Block a user