Native CMAC

This commit is contained in:
Daniel Huigens 2018-04-13 12:16:36 +02:00
parent 6f2abdc2cf
commit 51d7860622
8 changed files with 339 additions and 267 deletions

View File

@ -1,21 +1,80 @@
/**
* @fileoverview This module implements AES-CMAC on top of
* native AES-CBC using either the WebCrypto API or Node.js' crypto API.
* @requires asmcrypto.js
* @requires util
* @module crypto/cmac
*/
import { AES_CMAC } from 'asmcrypto.js/src/aes/cmac/cmac';
import { AES_CBC } from 'asmcrypto.js/src/aes/cbc/exports';
import util from '../util';
export default class CMAC extends AES_CMAC {
constructor(key) {
super(key);
this._k = this.k.slice();
}
const webCrypto = util.getWebCryptoAll();
const nodeCrypto = util.getNodeCrypto();
const Buffer = util.getNodeBuffer();
mac(data) {
if (this.result) {
this.bufferLength = 0;
this.k.set(this._k, 0);
this.cbc.AES_reset(undefined, new Uint8Array(16), false);
}
return this.process(data).finish().result;
const blockLength = 16;
function set_xor_r(S, T) {
const offset = S.length - blockLength;
for (let i = 0; i < blockLength; i++) {
S[i + offset] ^= T[i];
}
return S;
}
function mul2(data) {
const t = data[0] & 0x80;
for (let i = 0; i < 15; i++) {
data[i] = (data[i] << 1) ^ ((data[i + 1] & 0x80) ? 1 : 0);
}
data[15] = (data[15] << 1) ^ (t ? 0x87 : 0);
return data;
}
const zeros_16 = new Uint8Array(16);
export default async function CMAC(key) {
const cbc = await CBC(key);
const padding = mul2(await cbc(zeros_16));
const padding2 = mul2(padding.slice());
return async function(data) {
return (await cbc(pad(data, padding, padding2))).subarray(-blockLength);
};
}
function pad(data, padding, padding2) {
if (data.length % blockLength === 0) {
return set_xor_r(data, padding);
}
const padded = new Uint8Array(data.length + (blockLength - data.length % blockLength));
padded.set(data);
padded[data.length] = 0b10000000;
return set_xor_r(padded, padding2);
}
async function CBC(key) {
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
key = await webCrypto.importKey('raw', key, { name: 'AES-CBC', length: key.length * 8 }, false, ['encrypt']);
return async function(pt) {
const ct = await webCrypto.encrypt({ name: 'AES-CBC', iv: zeros_16, length: blockLength * 8 }, key, pt);
return new Uint8Array(ct).subarray(0, ct.byteLength - blockLength);
};
}
if (util.getNodeCrypto()) { // Node crypto library
key = new Buffer(key);
return async function(pt) {
pt = new Buffer(pt);
const en = new nodeCrypto.createCipheriv('aes-' + (key.length * 8) + '-cbc', key, zeros_16);
const ct = en.update(pt);
return new Uint8Array(ct);
};
}
// asm.js fallback
return async function(pt) {
return AES_CBC.encrypt(pt, key, false, zeros_16);
};
}

View File

@ -41,98 +41,104 @@ const zero = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
const one = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
const two = new Uint8Array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]);
class OMAC extends CMAC {
mac(t, message) {
return super.mac(concat(t, message));
}
async function OMAC(key) {
const cmac = await CMAC(key);
return function(t, message) {
return cmac(concat(t, message));
};
}
class CTR {
constructor(key) {
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
this.key = webCrypto.importKey('raw', key, { name: 'AES-CTR', length: key.length * 8 }, false, ['encrypt']);
this.ctr = this.webCtr;
} else if (util.getNodeCrypto()) { // Node crypto library
this.key = new Buffer(key);
this.ctr = this.nodeCtr;
} else {
// asm.js fallback
this.key = key;
}
async function CTR(key) {
if (util.getWebCryptoAll() && key.length !== 24) { // WebCrypto (no 192 bit support) see: https://www.chromium.org/blink/webcrypto#TOC-AES-support
key = await webCrypto.importKey('raw', key, { name: 'AES-CTR', length: key.length * 8 }, false, ['encrypt']);
return async function(pt, iv) {
const ct = await webCrypto.encrypt({ name: 'AES-CTR', counter: iv, length: blockLength * 8 }, key, pt);
return new Uint8Array(ct);
};
}
webCtr(pt, iv) {
return this.key
.then(keyObj => webCrypto.encrypt({ name: 'AES-CTR', counter: iv, length: blockLength * 8 }, keyObj, pt))
.then(ct => new Uint8Array(ct));
}
nodeCtr(pt, iv) {
pt = new Buffer(pt);
iv = new Buffer(iv);
const en = new nodeCrypto.createCipheriv('aes-' + (this.key.length * 8) + '-ctr', this.key, iv);
const ct = Buffer.concat([en.update(pt), en.final()]);
return Promise.resolve(new Uint8Array(ct));
}
ctr(pt, iv) {
return Promise.resolve(AES_CTR.encrypt(pt, this.key, iv));
if (util.getNodeCrypto()) { // Node crypto library
key = new Buffer(key);
return async function(pt, iv) {
pt = new Buffer(pt);
iv = new Buffer(iv);
const en = new nodeCrypto.createCipheriv('aes-' + (key.length * 8) + '-ctr', key, iv);
const ct = Buffer.concat([en.update(pt), en.final()]);
return new Uint8Array(ct);
};
}
// asm.js fallback
return async function(pt, iv) {
return AES_CTR.encrypt(pt, key, iv);
};
}
class EAX {
/**
* Class to en/decrypt using EAX mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
constructor(cipher, key) {
if (cipher.substr(0, 3) !== 'aes') {
throw new Error('EAX mode supports only AES cipher');
/**
* Class to en/decrypt using EAX mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
async function EAX(cipher, key) {
if (cipher.substr(0, 3) !== 'aes') {
throw new Error('EAX mode supports only AES cipher');
}
const [
omac,
ctr
] = await Promise.all([
OMAC(key),
CTR(key)
]);
return {
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
encrypt: async function(plaintext, nonce, adata) {
const [
_nonce,
_adata
] = await Promise.all([
omac(zero, nonce),
omac(one, adata)
]);
const ciphered = await ctr(plaintext, _nonce);
const _ciphered = await omac(two, ciphered);
const tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
return concat(ciphered, tag);
},
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
decrypt: async function(ciphertext, nonce, adata) {
if (ciphertext.length < tagLength) throw new Error('Invalid EAX ciphertext');
const ciphered = ciphertext.subarray(0, ciphertext.length - tagLength);
const tag = ciphertext.subarray(ciphertext.length - tagLength);
const [
_nonce,
_adata,
_ciphered
] = await Promise.all([
omac(zero, nonce),
omac(one, adata),
omac(two, ciphered)
]);
const _tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
if (!util.equalsUint8Array(tag, _tag)) throw new Error('Authentication tag mismatch in EAX ciphertext');
const plaintext = await ctr(ciphered, _nonce);
return plaintext;
}
const omac = new OMAC(key);
this.omac = omac.mac.bind(omac);
const ctr = new CTR(key);
this.ctr = ctr.ctr.bind(ctr);
}
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
async encrypt(plaintext, nonce, adata) {
const _nonce = this.omac(zero, nonce);
const _adata = this.omac(one, adata);
const ciphered = await this.ctr(plaintext, _nonce);
const _ciphered = this.omac(two, ciphered);
const tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
return concat(ciphered, tag);
}
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (16 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
async decrypt(ciphertext, nonce, adata) {
if (ciphertext.length < tagLength) throw new Error('Invalid EAX ciphertext');
const ciphered = ciphertext.subarray(0, ciphertext.length - tagLength);
const tag = ciphertext.subarray(ciphertext.length - tagLength);
const _nonce = this.omac(zero, nonce);
const _adata = this.omac(one, adata);
const _ciphered = this.omac(two, ciphered);
const _tag = xor3(_nonce, _ciphered, _adata); // Assumes that omac(*).length === tagLength.
if (!util.equalsUint8Array(tag, _tag)) throw new Error('Authentication tag mismatch in EAX ciphertext');
const plaintext = await this.ctr(ciphered, _nonce);
return plaintext;
}
};
}

View File

@ -79,18 +79,19 @@ function double(S) {
const zeros_16 = zeros(16);
const one = new Uint8Array([1]);
class OCB {
/**
* Class to en/decrypt using OCB mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
constructor(cipher, key) {
this.max_ntz = 0;
this.constructKeyVariables(cipher, key);
}
/**
* Class to en/decrypt using OCB mode.
* @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128'
* @param {Uint8Array} key The encryption key
*/
async function OCB(cipher, key) {
constructKeyVariables(cipher, key) {
let max_ntz = 0;
let kv;
constructKeyVariables(cipher, key);
function constructKeyVariables(cipher, key) {
const aes = new ciphers[cipher](key);
const encipher = aes.encrypt.bind(aes);
const decipher = aes.decrypt.bind(aes);
@ -104,25 +105,25 @@ class OCB {
L.x = L_x;
L.$ = L_$;
this.kv = { encipher, decipher, L };
kv = { encipher, decipher, L };
}
extendKeyVariables(text, adata) {
const { L } = this.kv;
const max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
for (let i = this.max_ntz + 1; i <= max_ntz; i++) {
function extendKeyVariables(text, adata) {
const { L } = kv;
const new_max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1;
for (let i = max_ntz + 1; i <= new_max_ntz; i++) {
L[i] = double(L[i - 1]);
}
this.max_ntz = max_ntz;
max_ntz = new_max_ntz;
}
hash(adata) {
function hash(adata) {
if (!adata.length) {
// Fast path
return zeros_16;
}
const { encipher, L } = this.kv;
const { encipher, L } = kv;
//
// Consider A as a sequence of 128-bit blocks
@ -155,154 +156,156 @@ class OCB {
}
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
async encrypt(plaintext, nonce, adata) {
//
// Consider P as a sequence of 128-bit blocks
//
const m = plaintext.length >> 4;
return {
/**
* Encrypt plaintext input.
* @param {Uint8Array} plaintext The cleartext input to be encrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to sign
* @returns {Promise<Uint8Array>} The ciphertext output
*/
encrypt: async function(plaintext, nonce, adata) {
//
// Consider P as a sequence of 128-bit blocks
//
const m = plaintext.length >> 4;
//
// Key-dependent variables
//
this.extendKeyVariables(plaintext, adata);
const { encipher, L } = this.kv;
//
// Key-dependent variables
//
extendKeyVariables(plaintext, adata);
const { encipher, L } = kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const C = new Uint8Array(plaintext.length + tagLength);
const C = new Uint8Array(plaintext.length + tagLength);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
C.set(set_xor(encipher(xor(offset, plaintext)), offset), pos);
set_xor(checksum, plaintext);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
C.set(set_xor(encipher(xor(offset, plaintext)), offset), pos);
set_xor(checksum, plaintext);
plaintext = plaintext.subarray(16);
pos += 16;
plaintext = plaintext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (plaintext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
C.set(xor(plaintext, Pad), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(plaintext, 0);
xorInput[plaintext.length] = 0b10000000;
set_xor(checksum, xorInput);
pos += plaintext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), hash(adata));
//
// Assemble ciphertext
//
C.set(Tag, pos);
return C;
},
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
decrypt: async function(ciphertext, nonce, adata) {
//
// Consider C as a sequence of 128-bit blocks
//
const T = ciphertext.subarray(ciphertext.length - tagLength);
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
const m = ciphertext.length >> 4;
//
// Key-dependent variables
//
extendKeyVariables(ciphertext, adata);
const { encipher, decipher, L } = kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const P = new Uint8Array(ciphertext.length);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
P.set(set_xor(decipher(xor(offset, ciphertext)), offset), pos);
set_xor(checksum, P.subarray(pos));
ciphertext = ciphertext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (ciphertext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
P.set(xor(ciphertext, Pad), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(P.subarray(pos), 0);
xorInput[ciphertext.length] = 0b10000000;
set_xor(checksum, xorInput);
pos += ciphertext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), hash(adata));
//
// Check for validity and assemble plaintext
//
if (!util.equalsUint8Array(Tag, T)) {
throw new Error('Authentication tag mismatch in OCB ciphertext');
}
return P;
}
//
// Process any final partial block and compute raw tag
//
if (plaintext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
C.set(xor(plaintext, Pad), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(plaintext, 0);
xorInput[plaintext.length] = 0b10000000;
set_xor(checksum, xorInput);
pos += plaintext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), this.hash(adata));
//
// Assemble ciphertext
//
C.set(Tag, pos);
return C;
}
/**
* Decrypt ciphertext input.
* @param {Uint8Array} ciphertext The ciphertext input to be decrypted
* @param {Uint8Array} nonce The nonce (15 bytes)
* @param {Uint8Array} adata Associated data to verify
* @returns {Promise<Uint8Array>} The plaintext output
*/
async decrypt(ciphertext, nonce, adata) {
//
// Consider C as a sequence of 128-bit blocks
//
const T = ciphertext.subarray(ciphertext.length - tagLength);
ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength);
const m = ciphertext.length >> 4;
//
// Key-dependent variables
//
this.extendKeyVariables(ciphertext, adata);
const { encipher, decipher, L } = this.kv;
//
// Nonce-dependent and per-encryption variables
//
// We assume here that TAGLEN mod 128 == 0 (tagLength === 16).
const Nonce = concat(zeros_16.subarray(0, 15 - nonce.length), one, nonce);
const bottom = Nonce[15] & 0b111111;
Nonce[15] &= 0b11000000;
const Ktop = encipher(Nonce);
const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9)));
// Offset_0 = Stretch[1+bottom..128+bottom]
const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1);
const checksum = zeros(16);
const P = new Uint8Array(ciphertext.length);
//
// Process any whole blocks
//
let i;
let pos = 0;
for (i = 0; i < m; i++) {
set_xor(offset, L[ntz(i + 1)]);
P.set(set_xor(decipher(xor(offset, ciphertext)), offset), pos);
set_xor(checksum, P.subarray(pos));
ciphertext = ciphertext.subarray(16);
pos += 16;
}
//
// Process any final partial block and compute raw tag
//
if (ciphertext.length) {
set_xor(offset, L.x);
const Pad = encipher(offset);
P.set(xor(ciphertext, Pad), pos);
// Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*)))
const xorInput = zeros(16);
xorInput.set(P.subarray(pos), 0);
xorInput[ciphertext.length] = 0b10000000;
set_xor(checksum, xorInput);
pos += ciphertext.length;
}
const Tag = set_xor(encipher(set_xor(set_xor(checksum, offset), L.$)), this.hash(adata));
//
// Check for validity and assemble plaintext
//
if (!util.equalsUint8Array(Tag, T)) {
throw new Error('Authentication tag mismatch in OCB ciphertext');
}
return P;
}
};
}

View File

@ -211,7 +211,8 @@ SecretKey.prototype.encrypt = async function (passphrase) {
arr = [new Uint8Array([253, optionalFields.length])];
arr.push(optionalFields);
const mode = crypto[aead];
const encrypted = await new mode(symmetric, key).encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array());
const modeInstance = await mode(symmetric, key);
const encrypted = await modeInstance.encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array());
arr.push(util.writeNumber(encrypted.length, 4));
arr.push(encrypted);
} else {
@ -305,7 +306,8 @@ SecretKey.prototype.decrypt = async function (passphrase) {
if (aead) {
const mode = crypto[aead];
try {
cleartext = await new mode(symmetric, key).decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array());
const modeInstance = await mode(symmetric, key);
cleartext = await modeInstance.decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array());
} catch(err) {
if (err.message.startsWith('Authentication tag mismatch')) {
throw new Error('Incorrect key passphrase: ' + err.message);

View File

@ -107,7 +107,7 @@ SymEncryptedAEADProtected.prototype.decrypt = async function (sessionKeyAlgorith
adataArray.set([0xC0 | this.tag, this.version, this.cipherAlgo, this.aeadAlgo, this.chunkSizeByte], 0);
adataView.setInt32(13 + 4, data.length - mode.blockLength); // Should be setInt64(13, ...)
const decryptedPromises = [];
const modeInstance = new mode(cipher, key);
const modeInstance = await mode(cipher, key);
for (let chunkIndex = 0; chunkIndex === 0 || data.length;) {
decryptedPromises.push(
modeInstance.decrypt(data.subarray(0, chunkSize), mode.getNonce(this.iv, chunkIndexArray), adataArray)
@ -149,7 +149,7 @@ SymEncryptedAEADProtected.prototype.encrypt = async function (sessionKeyAlgorith
adataArray.set([0xC0 | this.tag, this.version, this.cipherAlgo, this.aeadAlgo, this.chunkSizeByte], 0);
adataView.setInt32(13 + 4, data.length); // Should be setInt64(13, ...)
const encryptedPromises = [];
const modeInstance = new mode(sessionKeyAlgorithm, key);
const modeInstance = await mode(sessionKeyAlgorithm, key);
for (let chunkIndex = 0; chunkIndex === 0 || data.length;) {
encryptedPromises.push(
modeInstance.encrypt(data.subarray(0, chunkSize), mode.getNonce(this.iv, chunkIndexArray), adataArray)

View File

@ -142,7 +142,8 @@ SymEncryptedSessionKey.prototype.decrypt = async function(passphrase) {
if (this.version === 5) {
const mode = crypto[this.aeadAlgorithm];
const adata = new Uint8Array([0xC0 | this.tag, this.version, enums.write(enums.symmetric, this.sessionKeyEncryptionAlgorithm), enums.write(enums.aead, this.aeadAlgorithm)]);
this.sessionKey = await new mode(algo, key).decrypt(this.encrypted, this.iv, adata);
const modeInstance = await mode(algo, key);
this.sessionKey = await modeInstance.decrypt(this.encrypted, this.iv, adata);
} else if (this.encrypted !== null) {
const decrypted = crypto.cfb.normalDecrypt(algo, key, this.encrypted, null);
@ -182,7 +183,8 @@ SymEncryptedSessionKey.prototype.encrypt = async function(passphrase) {
const mode = crypto[this.aeadAlgorithm];
this.iv = await crypto.random.getRandomBytes(mode.ivLength); // generate new random IV
const adata = new Uint8Array([0xC0 | this.tag, this.version, enums.write(enums.symmetric, this.sessionKeyEncryptionAlgorithm), enums.write(enums.aead, this.aeadAlgorithm)]);
this.encrypted = await new mode(algo, key).encrypt(this.sessionKey, this.iv, adata);
const modeInstance = await mode(algo, key);
this.encrypted = await modeInstance.encrypt(this.sessionKey, this.iv, adata);
} else {
const algo_enum = new Uint8Array([enums.write(enums.symmetric, this.sessionKeyAlgorithm)]);
const private_key = util.concatUint8Array([algo_enum, this.sessionKey]);

View File

@ -94,7 +94,7 @@ function testAESEAX() {
headerBytes = openpgp.util.hex_to_Uint8Array(vec.header),
ctBytes = openpgp.util.hex_to_Uint8Array(vec.ct);
const eax = new openpgp.crypto.eax(cipher, keyBytes);
const eax = await openpgp.crypto.eax(cipher, keyBytes);
// encryption test
let ct = await eax.encrypt(msgBytes, nonceBytes, headerBytes);

View File

@ -122,7 +122,7 @@ describe('Symmetric AES-OCB', function() {
headerBytes = openpgp.util.hex_to_Uint8Array(vec.A),
ctBytes = openpgp.util.hex_to_Uint8Array(vec.C);
const ocb = new openpgp.crypto.ocb(cipher, keyBytes);
const ocb = await openpgp.crypto.ocb(cipher, keyBytes);
// encryption test
let ct = await ocb.encrypt(msgBytes, nonceBytes, headerBytes);
@ -162,7 +162,7 @@ describe('Symmetric AES-OCB', function() {
const K = new Uint8Array(KEYLEN / 8);
K[K.length - 1] = TAGLEN;
const ocb = new openpgp.crypto.ocb('aes' + KEYLEN, K);
const ocb = await openpgp.crypto.ocb('aes' + KEYLEN, K);
const C = [];
let N;