Use native BigInt when available instead of bn.js (#1119)
In the lightweight build, lazily load bn.js only when necessary. Also, use Uint8Arrays instead of strings in PKCS1 padding functions, and check that the leading zero is present when decoding EME-PKCS1 padding.
This commit is contained in:
parent
fe2949f16d
commit
8854b097b4
|
@ -33,7 +33,8 @@ module.exports = {
|
|||
"postMessage": true,
|
||||
"resolves": true,
|
||||
"rejects": true,
|
||||
"TransformStream": true
|
||||
"TransformStream": true,
|
||||
"BigInt": true
|
||||
},
|
||||
|
||||
"rules": {
|
||||
|
|
324
src/biginteger/bn.interface.js
Normal file
324
src/biginteger/bn.interface.js
Normal file
|
@ -0,0 +1,324 @@
|
|||
import BN from 'bn.js';
|
||||
|
||||
/**
|
||||
* BigInteger implementation of basic operations
|
||||
* Wrapper of bn.js library (wwww.github.com/indutny/bn.js)
|
||||
*/
|
||||
export default class BigInteger {
|
||||
/**
|
||||
* Get a BigInteger (input must be big endian for strings and arrays)
|
||||
* @param {Number|String|Uint8Array} n value to convert
|
||||
* @throws {Error} on undefined input
|
||||
*/
|
||||
constructor(n) {
|
||||
if (n === undefined) {
|
||||
throw new Error('Invalid BigInteger input');
|
||||
}
|
||||
|
||||
this.value = new BN(n);
|
||||
}
|
||||
|
||||
clone() {
|
||||
const clone = new BigInteger(null);
|
||||
this.value.copy(clone.value);
|
||||
return clone;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger increment in place
|
||||
*/
|
||||
iinc() {
|
||||
this.value.iadd(one.value);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger increment
|
||||
* @returns {BigInteger} this + 1
|
||||
*/
|
||||
inc() {
|
||||
return this.clone().iinc();
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger decrement in place
|
||||
*/
|
||||
idec() {
|
||||
this.value.isub(one.value);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger decrement
|
||||
* @returns {BigInteger} this - 1
|
||||
*/
|
||||
dec() {
|
||||
return this.clone().idec();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* BigInteger addition in place
|
||||
* @param {BigInteger} x value to add
|
||||
*/
|
||||
iadd(x) {
|
||||
this.value.iadd(x.value);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger addition
|
||||
* @param {BigInteger} x value to add
|
||||
* @returns {BigInteger} this + x
|
||||
*/
|
||||
add(x) {
|
||||
return this.clone().iadd(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger subtraction in place
|
||||
* @param {BigInteger} x value to subtract
|
||||
*/
|
||||
isub(x) {
|
||||
this.value.isub(x.value);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger subtraction
|
||||
* @param {BigInteger} x value to subtract
|
||||
* @returns {BigInteger} this - x
|
||||
*/
|
||||
sub(x) {
|
||||
return this.clone().isub(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger multiplication in place
|
||||
* @param {BigInteger} x value to multiply
|
||||
*/
|
||||
imul(x) {
|
||||
this.value.imul(x.value);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger multiplication
|
||||
* @param {BigInteger} x value to multiply
|
||||
* @returns {BigInteger} this * x
|
||||
*/
|
||||
mul(x) {
|
||||
return this.clone().imul(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute value modulo m, in place
|
||||
* @param {BigInteger} m modulo
|
||||
*/
|
||||
imod(m) {
|
||||
this.value = this.value.umod(m.value);
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute value modulo m
|
||||
* @param {BigInteger} m modulo
|
||||
* @returns {BigInteger} this mod m
|
||||
*/
|
||||
mod(m) {
|
||||
return this.clone().imod(m);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute modular exponentiation
|
||||
* Much faster than this.exp(e).mod(n)
|
||||
* @param {BigInteger} e exponent
|
||||
* @param {BigInteger} n modulo
|
||||
* @returns {BigInteger} this ** e mod n
|
||||
*/
|
||||
modExp(e, n) {
|
||||
// We use either Montgomery or normal reduction context
|
||||
// Montgomery requires coprime n and R (montogmery multiplier)
|
||||
// bn.js picks R as power of 2, so n must be odd
|
||||
const nred = n.isEven() ? BN.red(n.value) : BN.mont(n.value);
|
||||
const x = this.clone();
|
||||
x.value = x.value.toRed(nred).redPow(e.value).fromRed();
|
||||
return x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the inverse of this value modulo n
|
||||
* Note: this and and n must be relatively prime
|
||||
* @param {BigInteger} n modulo
|
||||
* @return {BigInteger} x such that this*x = 1 mod n
|
||||
*/
|
||||
modInv(n) {
|
||||
return new BigInteger(this.value.invm(n.value));
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute greatest common divisor between this and n
|
||||
* @param {BigInteger} n operand
|
||||
* @return {BigInteger} gcd
|
||||
*/
|
||||
gcd(n) {
|
||||
return new BigInteger(this.value.gcd(n.value));
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift this to the left by x, in place
|
||||
* @param {BigInteger} x shift value
|
||||
*/
|
||||
ileftShift(x) {
|
||||
this.value.ishln(x.value.toNumber());
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift this to the left by x
|
||||
* @param {BigInteger} x shift value
|
||||
* @returns {BigInteger} this << x
|
||||
*/
|
||||
leftShift(x) {
|
||||
return this.clone().ileftShift(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift this to the right by x, in place
|
||||
* @param {BigInteger} x shift value
|
||||
*/
|
||||
irightShift(x) {
|
||||
this.value.ishrn(x.value.toNumber());
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift this to the right by x
|
||||
* @param {BigInteger} x shift value
|
||||
* @returns {BigInteger} this >> x
|
||||
*/
|
||||
rightShift(x) {
|
||||
return this.clone().irightShift(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is equal to x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
equal(x) {
|
||||
return this.value.eq(x.value);
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is less than x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
lt(x) {
|
||||
return this.value.lt(x.value);
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is less than or equal to x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
lte(x) {
|
||||
return this.value.lte(x.value);
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is greater than x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
gt(x) {
|
||||
return this.value.gt(x.value);
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is greater than or equal to x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
gte(x) {
|
||||
return this.value.gte(x.value);
|
||||
}
|
||||
|
||||
isZero() {
|
||||
return this.value.isZero();
|
||||
}
|
||||
|
||||
isOne() {
|
||||
return this.equal(one);
|
||||
}
|
||||
|
||||
isNegative() {
|
||||
return this.value.isNeg();
|
||||
}
|
||||
|
||||
isEven() {
|
||||
return this.value.isEven();
|
||||
}
|
||||
|
||||
abs() {
|
||||
const res = this.clone();
|
||||
res.value = res.value.abs();
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get this value as a string
|
||||
* @returns {String} this value
|
||||
*/
|
||||
toString() {
|
||||
return this.value.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Get this value as an exact Number (max 53 bits)
|
||||
* Fails if this value is too large
|
||||
* @return {Number}
|
||||
*/
|
||||
toNumber() {
|
||||
return this.value.toNumber();
|
||||
}
|
||||
|
||||
/**
|
||||
* Get value of i-th bit
|
||||
* @param {Number} i bit index
|
||||
* @returns {Number} bit value
|
||||
*/
|
||||
getBit(i) {
|
||||
return this.value.testn(i) ? 1 : 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute bit length
|
||||
* @returns {Number} bit length
|
||||
*/
|
||||
bitLength() {
|
||||
return this.value.bitLength();
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute byte length
|
||||
* @returns {Number} byte length
|
||||
*/
|
||||
byteLength() {
|
||||
return this.value.byteLength();
|
||||
}
|
||||
|
||||
/**
|
||||
* Get Uint8Array representation of this number
|
||||
* @param {String} endian endianess of output array (defaults to 'be')
|
||||
* @param {Number} length of output array
|
||||
* @return {Uint8Array}
|
||||
*/
|
||||
toUint8Array(endian = 'be', length) {
|
||||
return this.value.toArrayLike(Uint8Array, endian, length);
|
||||
}
|
||||
}
|
||||
|
||||
const one = new BigInteger(1);
|
14
src/biginteger/index.js
Normal file
14
src/biginteger/index.js
Normal file
|
@ -0,0 +1,14 @@
|
|||
import util from '../util';
|
||||
import BigInteger from './native.interface';
|
||||
|
||||
async function getBigInteger() {
|
||||
if (util.detectBigInt()) {
|
||||
return BigInteger;
|
||||
} else {
|
||||
const { default: BigInteger } = await import('./bn.interface');
|
||||
return BigInteger;
|
||||
}
|
||||
}
|
||||
|
||||
// eslint-disable-next-line import/prefer-default-export
|
||||
export { getBigInteger };
|
441
src/biginteger/native.interface.js
Normal file
441
src/biginteger/native.interface.js
Normal file
|
@ -0,0 +1,441 @@
|
|||
/* eslint-disable new-cap */
|
||||
|
||||
/**
|
||||
* BigInteger implementation of basic operations
|
||||
* that wraps the native BigInt library.
|
||||
* Operations are not constant time,
|
||||
* but we try and limit timing leakage where we can
|
||||
*/
|
||||
export default class BigInteger {
|
||||
/**
|
||||
* Get a BigInteger (input must be big endian for strings and arrays)
|
||||
* @param {Number|String|Uint8Array} n value to convert
|
||||
* @throws {Error} on null or undefined input
|
||||
*/
|
||||
constructor(n) {
|
||||
if (n === undefined) {
|
||||
throw new Error('Invalid BigInteger input');
|
||||
}
|
||||
|
||||
if (n instanceof Uint8Array) {
|
||||
const bytes = n;
|
||||
const hex = new Array(bytes.length);
|
||||
for (let i = 0; i < bytes.length; i++) {
|
||||
const hexByte = bytes[i].toString(16);
|
||||
hex[i] = (bytes[i] <= 0xF) ? ('0' + hexByte) : hexByte;
|
||||
}
|
||||
this.value = BigInt('0x0' + hex.join(''));
|
||||
} else {
|
||||
this.value = BigInt(n);
|
||||
}
|
||||
}
|
||||
|
||||
clone() {
|
||||
return new BigInteger(this.value);
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger increment in place
|
||||
*/
|
||||
iinc() {
|
||||
this.value++;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger increment
|
||||
* @returns {BigInteger} this + 1
|
||||
*/
|
||||
inc() {
|
||||
return this.clone().iinc();
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger decrement in place
|
||||
*/
|
||||
idec() {
|
||||
this.value--;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger decrement
|
||||
* @returns {BigInteger} this - 1
|
||||
*/
|
||||
dec() {
|
||||
return this.clone().idec();
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger addition in place
|
||||
* @param {BigInteger} x value to add
|
||||
*/
|
||||
iadd(x) {
|
||||
this.value += x.value;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger addition
|
||||
* @param {BigInteger} x value to add
|
||||
* @returns {BigInteger} this + x
|
||||
*/
|
||||
add(x) {
|
||||
return this.clone().iadd(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger subtraction in place
|
||||
* @param {BigInteger} x value to subtract
|
||||
*/
|
||||
isub(x) {
|
||||
this.value -= x.value;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger subtraction
|
||||
* @param {BigInteger} x value to subtract
|
||||
* @returns {BigInteger} this - x
|
||||
*/
|
||||
sub(x) {
|
||||
return this.clone().isub(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger multiplication in place
|
||||
* @param {BigInteger} x value to multiply
|
||||
*/
|
||||
imul(x) {
|
||||
this.value *= x.value;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* BigInteger multiplication
|
||||
* @param {BigInteger} x value to multiply
|
||||
* @returns {BigInteger} this * x
|
||||
*/
|
||||
mul(x) {
|
||||
return this.clone().imul(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute value modulo m, in place
|
||||
* @param {BigInteger} m modulo
|
||||
*/
|
||||
imod(m) {
|
||||
this.value %= m.value;
|
||||
if (this.isNegative()) {
|
||||
this.iadd(m);
|
||||
}
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute value modulo m
|
||||
* @param {BigInteger} m modulo
|
||||
* @returns {BigInteger} this mod m
|
||||
*/
|
||||
mod(m) {
|
||||
return this.clone().imod(m);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute modular exponentiation using square and multiply
|
||||
* @param {BigInteger} e exponent
|
||||
* @param {BigInteger} n modulo
|
||||
* @returns {BigInteger} this ** e mod n
|
||||
*/
|
||||
modExp(e, n) {
|
||||
if (n.isZero()) throw Error("Modulo cannot be zero");
|
||||
if (n.isOne()) return new BigInteger(0);
|
||||
if (e.isNegative()) throw Error("Unsopported negative exponent");
|
||||
|
||||
let exp = e.value;
|
||||
let x = this.value;
|
||||
|
||||
x %= n.value;
|
||||
let r = BigInt(1);
|
||||
while (exp > BigInt(0)) {
|
||||
const lsb = exp & BigInt(1);
|
||||
exp >>= BigInt(1); // e / 2
|
||||
// Always compute multiplication step, to reduce timing leakage
|
||||
const rx = (r * x) % n.value;
|
||||
// Update r only if lsb is 1 (odd exponent)
|
||||
r = lsb ? rx : r;
|
||||
x = (x * x) % n.value; // Square
|
||||
}
|
||||
return new BigInteger(r);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Compute the inverse of this value modulo n
|
||||
* Note: this and and n must be relatively prime
|
||||
* @param {BigInteger} n modulo
|
||||
* @return {BigInteger} x such that this*x = 1 mod n
|
||||
*/
|
||||
modInv(n) {
|
||||
return this._egcd(n).x.add(n).mod(n);
|
||||
}
|
||||
|
||||
/**
|
||||
* Extended Eucleadian algorithm (http://anh.cs.luc.edu/331/notes/xgcd.pdf)
|
||||
* Given a = this and b, compute (x, y) such that ax + by = gdc(a, b)
|
||||
* @param {BigInteger} b second operand
|
||||
* @returns { gcd, x, y: BigInteger }
|
||||
*/
|
||||
_egcd(b) {
|
||||
let x = BigInt(0);
|
||||
let y = BigInt(1);
|
||||
let xPrev = BigInt(1);
|
||||
let yPrev = BigInt(0);
|
||||
|
||||
let a = this.value;
|
||||
b = b.value;
|
||||
|
||||
while (b !== BigInt(0)) {
|
||||
const q = a / b;
|
||||
let tmp = x;
|
||||
x = xPrev - q * x;
|
||||
xPrev = tmp;
|
||||
|
||||
tmp = y;
|
||||
y = yPrev - q * y;
|
||||
yPrev = tmp;
|
||||
|
||||
tmp = b;
|
||||
b = a % b;
|
||||
a = tmp;
|
||||
}
|
||||
|
||||
return {
|
||||
x: new BigInteger(xPrev),
|
||||
y: new BigInteger(yPrev),
|
||||
gcd: new BigInteger(a)
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute greatest common divisor between this and n
|
||||
* @param {BigInteger} b operand
|
||||
* @return {BigInteger} gcd
|
||||
*/
|
||||
gcd(b) {
|
||||
let a = this.value;
|
||||
b = b.value;
|
||||
while (b !== BigInt(0)) {
|
||||
const tmp = b;
|
||||
b = a % b;
|
||||
a = tmp;
|
||||
}
|
||||
return new BigInteger(a);
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift this to the left by x, in place
|
||||
* @param {BigInteger} x shift value
|
||||
*/
|
||||
ileftShift(x) {
|
||||
this.value <<= x.value;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift this to the left by x
|
||||
* @param {BigInteger} x shift value
|
||||
* @returns {BigInteger} this << x
|
||||
*/
|
||||
leftShift(x) {
|
||||
return this.clone().ileftShift(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift this to the right by x, in place
|
||||
* @param {BigInteger} x shift value
|
||||
*/
|
||||
irightShift(x) {
|
||||
this.value >>= x.value;
|
||||
return this;
|
||||
}
|
||||
|
||||
/**
|
||||
* Shift this to the right by x
|
||||
* @param {BigInteger} x shift value
|
||||
* @returns {BigInteger} this >> x
|
||||
*/
|
||||
rightShift(x) {
|
||||
return this.clone().irightShift(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is equal to x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
equal(x) {
|
||||
return this.value === x.value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is less than x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
lt(x) {
|
||||
return this.value < x.value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is less than or equal to x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
lte(x) {
|
||||
return this.value <= x.value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is greater than x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
gt(x) {
|
||||
return this.value > x.value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Whether this value is greater than or equal to x
|
||||
* @param {BigInteger} x
|
||||
* @returns {Boolean}
|
||||
*/
|
||||
gte(x) {
|
||||
return this.value >= x.value;
|
||||
}
|
||||
|
||||
isZero() {
|
||||
return this.value === BigInt(0);
|
||||
}
|
||||
|
||||
isOne() {
|
||||
return this.value === BigInt(1);
|
||||
}
|
||||
|
||||
isNegative() {
|
||||
return this.value < BigInt(0);
|
||||
}
|
||||
|
||||
isEven() {
|
||||
return !(this.value & BigInt(1));
|
||||
}
|
||||
|
||||
abs() {
|
||||
const res = this.clone();
|
||||
if (this.isNegative()) {
|
||||
res.value = -res.value;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get this value as a string
|
||||
* @returns {String} this value
|
||||
*/
|
||||
toString() {
|
||||
return this.value.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Get this value as an exact Number (max 53 bits)
|
||||
* Fails if this value is too large
|
||||
* @return {Number}
|
||||
*/
|
||||
toNumber() {
|
||||
const number = Number(this.value);
|
||||
if (number > Number.MAX_SAFE_INTEGER) {
|
||||
// We throw and error to conform with the bn.js implementation
|
||||
throw new Error('Number can only safely store up to 53 bits');
|
||||
}
|
||||
return number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get value of i-th bit
|
||||
* @param {Number} i bit index
|
||||
* @returns {Number} bit value
|
||||
*/
|
||||
getBit(i) {
|
||||
const bit = (this.value >> BigInt(i)) & BigInt(1);
|
||||
return (bit === BigInt(0)) ? 0 : 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute bit length
|
||||
* @returns {Number} bit length
|
||||
*/
|
||||
bitLength() {
|
||||
const zero = new BigInteger(0);
|
||||
const one = new BigInteger(1);
|
||||
const negOne = new BigInteger(-1);
|
||||
|
||||
// -1n >> -1n is -1n
|
||||
// 1n >> 1n is 0n
|
||||
const target = this.isNegative() ? negOne : zero;
|
||||
let bitlen = 1;
|
||||
const tmp = this.clone();
|
||||
while (!tmp.irightShift(one).equal(target)) {
|
||||
bitlen++;
|
||||
}
|
||||
return bitlen;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute byte length
|
||||
* @returns {Number} byte length
|
||||
*/
|
||||
byteLength() {
|
||||
const zero = new BigInteger(0);
|
||||
const negOne = new BigInteger(-1);
|
||||
|
||||
const target = this.isNegative() ? negOne : zero;
|
||||
const eight = new BigInteger(8);
|
||||
let len = 1;
|
||||
const tmp = this.clone();
|
||||
while (!tmp.irightShift(eight).equal(target)) {
|
||||
len++;
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get Uint8Array representation of this number
|
||||
* @param {String} endian endianess of output array (defaults to 'be')
|
||||
* @param {Number} length of output array
|
||||
* @return {Uint8Array}
|
||||
*/
|
||||
toUint8Array(endian = 'be', length) {
|
||||
// we get and parse the hex string (https://coolaj86.com/articles/convert-js-bigints-to-typedarrays/)
|
||||
// this is faster than shift+mod iterations
|
||||
let hex = this.value.toString(16);
|
||||
if (hex.length % 2 === 1) {
|
||||
hex = '0' + hex;
|
||||
}
|
||||
|
||||
const rawLength = hex.length / 2;
|
||||
const bytes = new Uint8Array(length || rawLength);
|
||||
// parse hex
|
||||
const offset = length ? (length - rawLength) : 0;
|
||||
let i = 0;
|
||||
while (i < rawLength) {
|
||||
bytes[i + offset] = parseInt(hex.slice(2 * i, 2 * i + 2), 16);
|
||||
i++;
|
||||
}
|
||||
|
||||
if (endian !== 'be') {
|
||||
bytes.reverse();
|
||||
}
|
||||
|
||||
return bytes;
|
||||
}
|
||||
}
|
|
@ -61,8 +61,8 @@ export default {
|
|||
* @param {Array<module:type/mpi|
|
||||
module:type/oid|
|
||||
module:type/kdf_params>} pub_params Algorithm-specific public key parameters
|
||||
* @param {String} data Data to be encrypted
|
||||
* @param {String} fingerprint Recipient fingerprint
|
||||
* @param {Uint8Array} data Data to be encrypted
|
||||
* @param {Uint8Array} fingerprint Recipient fingerprint
|
||||
* @returns {Array<module:type/mpi|
|
||||
* module:type/ecdh_symkey>} encrypted session key parameters
|
||||
* @async
|
||||
|
@ -72,7 +72,6 @@ export default {
|
|||
switch (algo) {
|
||||
case enums.publicKey.rsaEncrypt:
|
||||
case enums.publicKey.rsaEncryptSign: {
|
||||
data = util.strToUint8Array(data);
|
||||
const n = pub_params[0].toUint8Array();
|
||||
const e = pub_params[1].toUint8Array();
|
||||
const res = await publicKey.rsa.encrypt(data, n, e);
|
||||
|
@ -80,10 +79,10 @@ export default {
|
|||
}
|
||||
case enums.publicKey.elgamal: {
|
||||
data = new type_mpi(await pkcs1.eme.encode(data, pub_params[0].byteLength()));
|
||||
const m = data.toBN();
|
||||
const p = pub_params[0].toBN();
|
||||
const g = pub_params[1].toBN();
|
||||
const y = pub_params[2].toBN();
|
||||
const m = await data.toBigInteger();
|
||||
const p = await pub_params[0].toBigInteger();
|
||||
const g = await pub_params[1].toBigInteger();
|
||||
const y = await pub_params[2].toBigInteger();
|
||||
const res = await publicKey.elgamal.encrypt(m, p, g, y);
|
||||
return constructParams(types, [res.c1, res.c2]);
|
||||
}
|
||||
|
@ -129,14 +128,12 @@ export default {
|
|||
return publicKey.rsa.decrypt(c, n, e, d, p, q, u);
|
||||
}
|
||||
case enums.publicKey.elgamal: {
|
||||
const c1 = data_params[0].toBN();
|
||||
const c2 = data_params[1].toBN();
|
||||
const p = key_params[0].toBN();
|
||||
const x = key_params[3].toBN();
|
||||
const result = new type_mpi(await publicKey.elgamal.decrypt(c1, c2, p, x)); // MPI and BN.js discard any leading zeros
|
||||
return pkcs1.eme.decode(
|
||||
util.Uint8Array_to_str(result.toUint8Array('be', p.byteLength())) // re-introduce leading zeros
|
||||
);
|
||||
const c1 = await data_params[0].toBigInteger();
|
||||
const c2 = await data_params[1].toBigInteger();
|
||||
const p = await key_params[0].toBigInteger();
|
||||
const x = await key_params[3].toBigInteger();
|
||||
const result = new type_mpi(await publicKey.elgamal.decrypt(c1, c2, p, x));
|
||||
return pkcs1.eme.decode(result.toUint8Array('be', p.byteLength()));
|
||||
}
|
||||
case enums.publicKey.ecdh: {
|
||||
const oid = key_params[0];
|
||||
|
@ -147,7 +144,7 @@ export default {
|
|||
const d = key_params[3].toUint8Array();
|
||||
const result = new type_mpi(await publicKey.elliptic.ecdh.decrypt(
|
||||
oid, kdfParams, V, C, Q, d, fingerprint));
|
||||
return pkcs5.decode(result.toString());
|
||||
return pkcs5.decode(result.toUint8Array());
|
||||
}
|
||||
default:
|
||||
throw new Error('Invalid public key encryption algorithm.');
|
||||
|
@ -271,7 +268,7 @@ export default {
|
|||
case enums.publicKey.rsaEncrypt:
|
||||
case enums.publicKey.rsaEncryptSign:
|
||||
case enums.publicKey.rsaSign: {
|
||||
return publicKey.rsa.generate(bits, "10001").then(function(keyObject) {
|
||||
return publicKey.rsa.generate(bits, 65537).then(function(keyObject) {
|
||||
return constructParams(
|
||||
types, [keyObject.n, keyObject.e, keyObject.d, keyObject.p, keyObject.q, keyObject.u]
|
||||
);
|
||||
|
|
|
@ -22,13 +22,11 @@
|
|||
* @see PublicKeyEncryptedSessionKeyPacket
|
||||
* @requires crypto/random
|
||||
* @requires crypto/hash
|
||||
* @requires util
|
||||
* @module crypto/pkcs1
|
||||
*/
|
||||
|
||||
import random from './random';
|
||||
import hash from './hash';
|
||||
import util from '../util';
|
||||
|
||||
/** @namespace */
|
||||
const eme = {};
|
||||
|
@ -56,17 +54,18 @@ hash_headers[11] = [0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01,
|
|||
/**
|
||||
* Create padding with secure random data
|
||||
* @private
|
||||
* @param {Integer} length Length of the padding in bytes
|
||||
* @returns {String} Padding as string
|
||||
* @param {Integer} length Length of the padding in bytes
|
||||
* @returns {Uint8Array} Random padding
|
||||
* @async
|
||||
*/
|
||||
async function getPkcs1Padding(length) {
|
||||
let result = '';
|
||||
while (result.length < length) {
|
||||
const randomBytes = await random.getRandomBytes(length - result.length);
|
||||
const result = new Uint8Array(length);
|
||||
let count = 0;
|
||||
while (count < length) {
|
||||
const randomBytes = await random.getRandomBytes(length - count);
|
||||
for (let i = 0; i < randomBytes.length; i++) {
|
||||
if (randomBytes[i] !== 0) {
|
||||
result += String.fromCharCode(randomBytes[i]);
|
||||
result[count++] = randomBytes[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -76,46 +75,46 @@ async function getPkcs1Padding(length) {
|
|||
/**
|
||||
* Create a EME-PKCS1-v1_5 padded message
|
||||
* @see {@link https://tools.ietf.org/html/rfc4880#section-13.1.1|RFC 4880 13.1.1}
|
||||
* @param {String} M message to be encoded
|
||||
* @param {Integer} k the length in octets of the key modulus
|
||||
* @returns {Promise<String>} EME-PKCS1 padded message
|
||||
* @param {Uint8Array} message message to be encoded
|
||||
* @param {Integer} keyLength the length in octets of the key modulus
|
||||
* @returns {Promise<Uint8Array>} EME-PKCS1 padded message
|
||||
* @async
|
||||
*/
|
||||
eme.encode = async function(M, k) {
|
||||
const mLen = M.length;
|
||||
eme.encode = async function(message, keyLength) {
|
||||
const mLength = message.length;
|
||||
// length checking
|
||||
if (mLen > k - 11) {
|
||||
if (mLength > keyLength - 11) {
|
||||
throw new Error('Message too long');
|
||||
}
|
||||
// Generate an octet string PS of length k - mLen - 3 consisting of
|
||||
// pseudo-randomly generated nonzero octets
|
||||
const PS = await getPkcs1Padding(k - mLen - 3);
|
||||
const PS = await getPkcs1Padding(keyLength - mLength - 3);
|
||||
// Concatenate PS, the message M, and other padding to form an
|
||||
// encoded message EM of length k octets as EM = 0x00 || 0x02 || PS || 0x00 || M.
|
||||
return String.fromCharCode(0) +
|
||||
String.fromCharCode(2) +
|
||||
PS +
|
||||
String.fromCharCode(0) +
|
||||
M;
|
||||
const encoded = new Uint8Array(keyLength);
|
||||
// 0x00 byte
|
||||
encoded[1] = 2;
|
||||
encoded.set(PS, 2);
|
||||
// 0x00 bytes
|
||||
encoded.set(message, keyLength - mLength);
|
||||
return encoded;
|
||||
};
|
||||
|
||||
/**
|
||||
* Decode a EME-PKCS1-v1_5 padded message
|
||||
* @see {@link https://tools.ietf.org/html/rfc4880#section-13.1.2|RFC 4880 13.1.2}
|
||||
* @param {String} EM encoded message, an octet string
|
||||
* @returns {String} message, an octet string
|
||||
* @param {Uint8Array} encoded encoded message bytes
|
||||
* @returns {Uint8Array} message
|
||||
*/
|
||||
eme.decode = function(EM) {
|
||||
const firstOct = EM.charCodeAt(0);
|
||||
const secondOct = EM.charCodeAt(1);
|
||||
eme.decode = function(encoded) {
|
||||
let i = 2;
|
||||
while (EM.charCodeAt(i) !== 0 && i < EM.length) {
|
||||
while (encoded[i] !== 0 && i < encoded.length) {
|
||||
i++;
|
||||
}
|
||||
const psLen = i - 2;
|
||||
const separator = EM.charCodeAt(i++);
|
||||
if (firstOct === 0 && secondOct === 2 && psLen >= 8 && separator === 0) {
|
||||
return EM.substr(i);
|
||||
const separator = encoded[i++];
|
||||
if (encoded[0] === 0 && encoded[1] === 2 && psLen >= 8 && separator === 0) {
|
||||
return encoded.subarray(i);
|
||||
}
|
||||
throw new Error('Decryption error');
|
||||
};
|
||||
|
@ -126,41 +125,36 @@ eme.decode = function(EM) {
|
|||
* @param {Integer} algo Hash algorithm type used
|
||||
* @param {Uint8Array} hashed message to be encoded
|
||||
* @param {Integer} emLen intended length in octets of the encoded message
|
||||
* @returns {String} encoded message
|
||||
* @returns {Uint8Array} encoded message
|
||||
*/
|
||||
emsa.encode = async function(algo, hashed, emLen) {
|
||||
let i;
|
||||
const H = util.uint8ArrayToStr(hashed);
|
||||
if (H.length !== hash.getHashByteLength(algo)) {
|
||||
if (hashed.length !== hash.getHashByteLength(algo)) {
|
||||
throw new Error('Invalid hash length');
|
||||
}
|
||||
// produce an ASN.1 DER value for the hash function used.
|
||||
// Let T be the full hash prefix
|
||||
let T = '';
|
||||
const hashPrefix = new Uint8Array(hash_headers[algo].length);
|
||||
for (i = 0; i < hash_headers[algo].length; i++) {
|
||||
T += String.fromCharCode(hash_headers[algo][i]);
|
||||
hashPrefix[i] = hash_headers[algo][i];
|
||||
}
|
||||
// add hash value to prefix
|
||||
T += H;
|
||||
// and let tLen be the length in octets of T
|
||||
const tLen = T.length;
|
||||
// and let tLen be the length in octets prefix and hashed data
|
||||
const tLen = hashPrefix.length + hashed.length;
|
||||
if (emLen < tLen + 11) {
|
||||
throw new Error('Intended encoded message length too short');
|
||||
}
|
||||
// an octet string PS consisting of emLen - tLen - 3 octets with hexadecimal value 0xFF
|
||||
// The length of PS will be at least 8 octets
|
||||
let PS = '';
|
||||
for (i = 0; i < (emLen - tLen - 3); i++) {
|
||||
PS += String.fromCharCode(0xff);
|
||||
}
|
||||
// Concatenate PS, the hash prefix T, and other padding to form the
|
||||
// encoded message EM as EM = 0x00 || 0x01 || PS || 0x00 || T.
|
||||
const EM = String.fromCharCode(0x00) +
|
||||
String.fromCharCode(0x01) +
|
||||
PS +
|
||||
String.fromCharCode(0x00) +
|
||||
T;
|
||||
return util.strToHex(EM);
|
||||
const PS = new Uint8Array(emLen - tLen - 3).fill(0xff);
|
||||
|
||||
// Concatenate PS, the hash prefix, hashed data, and other padding to form the
|
||||
// encoded message EM as EM = 0x00 || 0x01 || PS || 0x00 || prefix || hashed
|
||||
const EM = new Uint8Array(emLen);
|
||||
EM[1] = 0x01;
|
||||
EM.set(PS, 2);
|
||||
EM.set(hashPrefix, emLen - tLen);
|
||||
EM.set(hashed, emLen - hashed.length);
|
||||
return EM;
|
||||
};
|
||||
|
||||
export default { eme, emsa };
|
||||
|
|
|
@ -15,6 +15,8 @@
|
|||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
|
||||
import util from '../util';
|
||||
|
||||
/**
|
||||
* @fileoverview Functions to add and remove PKCS5 padding
|
||||
* @see PublicKeyEncryptedSessionKeyPacket
|
||||
|
@ -22,30 +24,31 @@
|
|||
*/
|
||||
|
||||
/**
|
||||
* Add pkcs5 padding to a text.
|
||||
* @param {String} msg Text to add padding
|
||||
* @returns {String} Text with padding added
|
||||
* Add pkcs5 padding to a message
|
||||
* @param {Uint8Array} message message to pad
|
||||
* @returns {Uint8Array} padded message
|
||||
*/
|
||||
function encode(msg) {
|
||||
const c = 8 - (msg.length % 8);
|
||||
const padding = String.fromCharCode(c).repeat(c);
|
||||
return msg + padding;
|
||||
function encode(message) {
|
||||
const c = 8 - (message.length % 8);
|
||||
const padded = new Uint8Array(message.length + c).fill(c);
|
||||
padded.set(message);
|
||||
return padded;
|
||||
}
|
||||
|
||||
/**
|
||||
* Remove pkcs5 padding from a string.
|
||||
* @param {String} msg Text to remove padding from
|
||||
* @returns {String} Text with padding removed
|
||||
* Remove pkcs5 padding from a message
|
||||
* @param {Uint8Array} message message to remove padding from
|
||||
* @returns {Uint8Array} message without padding
|
||||
*/
|
||||
function decode(msg) {
|
||||
const len = msg.length;
|
||||
function decode(message) {
|
||||
const len = message.length;
|
||||
if (len > 0) {
|
||||
const c = msg.charCodeAt(len - 1);
|
||||
const c = message[len - 1];
|
||||
if (c >= 1) {
|
||||
const provided = msg.substr(len - c);
|
||||
const computed = String.fromCharCode(c).repeat(c);
|
||||
if (provided === computed) {
|
||||
return msg.substr(0, len - c);
|
||||
const provided = message.subarray(len - c);
|
||||
const computed = new Uint8Array(c).fill(c);
|
||||
if (util.equalsUint8Array(provided, computed)) {
|
||||
return message.subarray(0, len - c);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,20 +17,14 @@
|
|||
|
||||
/**
|
||||
* @fileoverview A Digital signature algorithm implementation
|
||||
* @requires bn.js
|
||||
* @requires crypto/random
|
||||
* @requires util
|
||||
* @module crypto/public_key/dsa
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import random from '../random';
|
||||
import util from '../../util';
|
||||
import prime from './prime';
|
||||
|
||||
const one = new BN(1);
|
||||
const zero = new BN(0);
|
||||
|
||||
/*
|
||||
TODO regarding the hash function, read:
|
||||
https://tools.ietf.org/html/rfc4880#section-13.6
|
||||
|
@ -42,28 +36,28 @@ export default {
|
|||
* DSA Sign function
|
||||
* @param {Integer} hash_algo
|
||||
* @param {Uint8Array} hashed
|
||||
* @param {BN} g
|
||||
* @param {BN} p
|
||||
* @param {BN} q
|
||||
* @param {BN} x
|
||||
* @returns {{ r: BN, s: BN }}
|
||||
* @param {BigInteger} g
|
||||
* @param {BigInteger} p
|
||||
* @param {BigInteger} q
|
||||
* @param {BigInteger} x
|
||||
* @returns {{ r: BigInteger, s: BigInteger }}
|
||||
* @async
|
||||
*/
|
||||
sign: async function(hash_algo, hashed, g, p, q, x) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
const one = new BigInteger(1);
|
||||
let k;
|
||||
let r;
|
||||
let s;
|
||||
let t;
|
||||
const redp = new BN.red(p);
|
||||
const redq = new BN.red(q);
|
||||
const gred = g.toRed(redp);
|
||||
const xred = x.toRed(redq);
|
||||
g = g.mod(p);
|
||||
x = x.mod(q);
|
||||
// If the output size of the chosen hash is larger than the number of
|
||||
// bits of q, the hash result is truncated to fit by taking the number
|
||||
// of leftmost bits equal to the number of bits of q. This (possibly
|
||||
// truncated) hash function result is treated as a number and used
|
||||
// directly in the DSA signature algorithm.
|
||||
const h = new BN(hashed.subarray(0, q.byteLength())).toRed(redq);
|
||||
const h = new BigInteger(hashed.subarray(0, q.byteLength())).mod(q);
|
||||
// FIPS-186-4, section 4.6:
|
||||
// The values of r and s shall be checked to determine if r = 0 or s = 0.
|
||||
// If either r = 0 or s = 0, a new value of k shall be generated, and the
|
||||
|
@ -71,57 +65,62 @@ export default {
|
|||
// or s = 0 if signatures are generated properly.
|
||||
while (true) {
|
||||
// See Appendix B here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
||||
k = await random.getRandomBN(one, q); // returns in [1, q-1]
|
||||
r = gred.redPow(k).fromRed().toRed(redq); // (g**k mod p) mod q
|
||||
if (zero.cmp(r) === 0) {
|
||||
k = await random.getRandomBigInteger(one, q); // returns in [1, q-1]
|
||||
r = g.modExp(k, p).imod(q); // (g**k mod p) mod q
|
||||
if (r.isZero()) {
|
||||
continue;
|
||||
}
|
||||
t = h.redAdd(xred.redMul(r)); // H(m) + x*r mod q
|
||||
s = k.toRed(redq).redInvm().redMul(t); // k**-1 * (H(m) + x*r) mod q
|
||||
if (zero.cmp(s) === 0) {
|
||||
const xr = x.mul(r).imod(q);
|
||||
t = h.add(xr).imod(q); // H(m) + x*r mod q
|
||||
s = k.modInv(q).imul(t).imod(q); // k**-1 * (H(m) + x*r) mod q
|
||||
if (s.isZero()) {
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
return {
|
||||
r: r.toArrayLike(Uint8Array, 'be', q.byteLength()),
|
||||
s: s.toArrayLike(Uint8Array, 'be', q.byteLength())
|
||||
r: r.toUint8Array('be', q.byteLength()),
|
||||
s: s.toUint8Array('be', q.byteLength())
|
||||
};
|
||||
},
|
||||
|
||||
/**
|
||||
* DSA Verify function
|
||||
* @param {Integer} hash_algo
|
||||
* @param {BN} r
|
||||
* @param {BN} s
|
||||
* @param {BigInteger} r
|
||||
* @param {BigInteger} s
|
||||
* @param {Uint8Array} hashed
|
||||
* @param {BN} g
|
||||
* @param {BN} p
|
||||
* @param {BN} q
|
||||
* @param {BN} y
|
||||
* @param {BigInteger} g
|
||||
* @param {BigInteger} p
|
||||
* @param {BigInteger} q
|
||||
* @param {BigInteger} y
|
||||
* @returns {boolean}
|
||||
* @async
|
||||
*/
|
||||
verify: async function(hash_algo, r, s, hashed, g, p, q, y) {
|
||||
if (zero.ucmp(r) >= 0 || r.ucmp(q) >= 0 ||
|
||||
zero.ucmp(s) >= 0 || s.ucmp(q) >= 0) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
const zero = new BigInteger(0);
|
||||
|
||||
if (r.lte(zero) || r.gte(q) ||
|
||||
s.lte(zero) || s.gte(q)) {
|
||||
util.printDebug("invalid DSA Signature");
|
||||
return null;
|
||||
}
|
||||
const redp = new BN.red(p);
|
||||
const redq = new BN.red(q);
|
||||
const h = new BN(hashed.subarray(0, q.byteLength()));
|
||||
const w = s.toRed(redq).redInvm(); // s**-1 mod q
|
||||
if (zero.cmp(w) === 0) {
|
||||
const h = new BigInteger(hashed.subarray(0, q.byteLength())).imod(q);
|
||||
const w = s.modInv(q); // s**-1 mod q
|
||||
if (w.isZero()) {
|
||||
util.printDebug("invalid DSA Signature");
|
||||
return null;
|
||||
}
|
||||
const u1 = h.toRed(redq).redMul(w); // H(m) * w mod q
|
||||
const u2 = r.toRed(redq).redMul(w); // r * w mod q
|
||||
const t1 = g.toRed(redp).redPow(u1.fromRed()); // g**u1 mod p
|
||||
const t2 = y.toRed(redp).redPow(u2.fromRed()); // y**u2 mod p
|
||||
const v = t1.redMul(t2).fromRed().mod(q); // (g**u1 * y**u2 mod p) mod q
|
||||
return v.cmp(r) === 0;
|
||||
|
||||
g = g.mod(p);
|
||||
y = y.mod(p);
|
||||
const u1 = h.mul(w).imod(q); // H(m) * w mod q
|
||||
const u2 = r.mul(w).imod(q); // r * w mod q
|
||||
const t1 = g.modExp(u1, p); // g**u1 mod p
|
||||
const t2 = y.modExp(u2, p); // y**u2 mod p
|
||||
const v = t1.mul(t2).imod(p).imod(q); // (g**u1 * y**u2 mod p) mod q
|
||||
return v.equal(r);
|
||||
},
|
||||
|
||||
/**
|
||||
|
@ -135,11 +134,12 @@ export default {
|
|||
* @async
|
||||
*/
|
||||
validateParams: async function (p, q, g, y, x) {
|
||||
p = new BN(p);
|
||||
q = new BN(q);
|
||||
g = new BN(g);
|
||||
y = new BN(y);
|
||||
const one = new BN(1);
|
||||
const BigInteger = await util.getBigInteger();
|
||||
p = new BigInteger(p);
|
||||
q = new BigInteger(q);
|
||||
g = new BigInteger(g);
|
||||
y = new BigInteger(y);
|
||||
const one = new BigInteger(1);
|
||||
// Check that 1 < g < p
|
||||
if (g.lte(one) || g.gte(p)) {
|
||||
return false;
|
||||
|
@ -148,25 +148,24 @@ export default {
|
|||
/**
|
||||
* Check that subgroup order q divides p-1
|
||||
*/
|
||||
if (!p.sub(one).mod(q).isZero()) {
|
||||
if (!p.dec().mod(q).isZero()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const pred = new BN.red(p);
|
||||
const gModP = g.toRed(pred);
|
||||
/**
|
||||
* g has order q
|
||||
* Check that g ** q = 1 mod p
|
||||
*/
|
||||
if (!gModP.redPow(q).eq(one)) {
|
||||
if (!g.modExp(q, p).isOne()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Check q is large and probably prime (we mainly want to avoid small factors)
|
||||
*/
|
||||
const qSize = q.bitLength();
|
||||
if (qSize < 150 || !(await prime.isProbablePrime(q, null, 32))) {
|
||||
const qSize = new BigInteger(q.bitLength());
|
||||
const n150 = new BigInteger(150);
|
||||
if (qSize.lt(n150) || !(await prime.isProbablePrime(q, null, 32))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -176,10 +175,11 @@ export default {
|
|||
*
|
||||
* Blinded exponentiation computes g**{rq + x} to compare to y
|
||||
*/
|
||||
x = new BN(x);
|
||||
const r = await random.getRandomBN(new BN(2).shln(qSize - 1), new BN(2).shln(qSize)); // draw r of same size as q
|
||||
x = new BigInteger(x);
|
||||
const two = new BigInteger(2);
|
||||
const r = await random.getRandomBigInteger(two.leftShift(qSize.dec()), two.leftShift(qSize)); // draw r of same size as q
|
||||
const rqx = q.mul(r).add(x);
|
||||
if (!y.eq(gModP.redPow(rqx))) {
|
||||
if (!y.equal(g.modExp(rqx, p))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -17,52 +17,45 @@
|
|||
|
||||
/**
|
||||
* @fileoverview ElGamal implementation
|
||||
* @requires bn.js
|
||||
* @requires crypto/random
|
||||
* @requires util
|
||||
* @module crypto/public_key/elgamal
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import util from '../../util';
|
||||
import random from '../random';
|
||||
|
||||
export default {
|
||||
/**
|
||||
* ElGamal Encryption function
|
||||
* @param {BN} m
|
||||
* @param {BN} p
|
||||
* @param {BN} g
|
||||
* @param {BN} y
|
||||
* @returns {{ c1: BN, c2: BN }}
|
||||
* @param {BigInteger} m
|
||||
* @param {BigInteger} p
|
||||
* @param {BigInteger} g
|
||||
* @param {BigInteger} y
|
||||
* @returns {{ c1: BigInteger, c2: BigInteger }}
|
||||
* @async
|
||||
*/
|
||||
encrypt: async function(m, p, g, y) {
|
||||
const redp = new BN.red(p);
|
||||
const mred = m.toRed(redp);
|
||||
const gred = g.toRed(redp);
|
||||
const yred = y.toRed(redp);
|
||||
// OpenPGP uses a "special" version of ElGamal where g is generator of the full group Z/pZ*
|
||||
// hence g has order p-1, and to avoid that k = 0 mod p-1, we need to pick k in [1, p-2]
|
||||
const k = await random.getRandomBN(new BN(1), p.subn(1));
|
||||
const BigInteger = await util.getBigInteger();
|
||||
// See Section 11.5 here: https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_4.pdf
|
||||
const k = await random.getRandomBigInteger(new BigInteger(0), p); // returns in [0, p-1]
|
||||
return {
|
||||
c1: gred.redPow(k).fromRed(),
|
||||
c2: yred.redPow(k).redMul(mred).fromRed()
|
||||
c1: g.modExp(k, p),
|
||||
c2: y.modExp(k, p).imul(m).imod(p)
|
||||
};
|
||||
},
|
||||
|
||||
/**
|
||||
* ElGamal Encryption function
|
||||
* @param {BN} c1
|
||||
* @param {BN} c2
|
||||
* @param {BN} p
|
||||
* @param {BN} x
|
||||
* @returns BN
|
||||
* @param {BigInteger} c1
|
||||
* @param {BigInteger} c2
|
||||
* @param {BigInteger} p
|
||||
* @param {BigInteger} x
|
||||
* @returns BigInteger
|
||||
* @async
|
||||
*/
|
||||
decrypt: async function(c1, c2, p, x) {
|
||||
const redp = new BN.red(p);
|
||||
const c1red = c1.toRed(redp);
|
||||
const c2red = c2.toRed(redp);
|
||||
return c1red.redPow(x).redInvm().redMul(c2red).fromRed();
|
||||
return c1.modExp(x, p).modInv(p).imul(c2).imod(p);
|
||||
},
|
||||
|
||||
/**
|
||||
|
@ -75,29 +68,29 @@ export default {
|
|||
* @async
|
||||
*/
|
||||
validateParams: async function (p, g, y, x) {
|
||||
p = new BN(p);
|
||||
g = new BN(g);
|
||||
y = new BN(y);
|
||||
const BigInteger = await util.getBigInteger();
|
||||
p = new BigInteger(p);
|
||||
g = new BigInteger(g);
|
||||
y = new BigInteger(y);
|
||||
|
||||
const one = new BN(1);
|
||||
const one = new BigInteger(1);
|
||||
// Check that 1 < g < p
|
||||
if (g.lte(one) || g.gte(p)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Expect p-1 to be large
|
||||
const pSize = p.subn(1).bitLength();
|
||||
if (pSize < 1023) {
|
||||
const pSize = new BigInteger(p.bitLength());
|
||||
const n1023 = new BigInteger(1023);
|
||||
if (pSize.lt(n1023)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const pred = new BN.red(p);
|
||||
const gModP = g.toRed(pred);
|
||||
/**
|
||||
* g should have order p-1
|
||||
* Check that g ** (p-1) = 1 mod p
|
||||
*/
|
||||
if (!gModP.redPow(p.subn(1)).eq(one)) {
|
||||
if (!g.modExp(p.dec(), p).isOne()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -108,14 +101,14 @@ export default {
|
|||
* We just check g**i != 1 for all i up to a threshold
|
||||
*/
|
||||
let res = g;
|
||||
const i = new BN(1);
|
||||
const threshold = new BN(2).shln(17); // we want order > threshold
|
||||
const i = new BigInteger(1);
|
||||
const threshold = new BigInteger(2).leftShift(new BigInteger(17)); // we want order > threshold
|
||||
while (i.lt(threshold)) {
|
||||
res = res.mul(g).mod(p);
|
||||
if (res.eqn(1)) {
|
||||
res = res.mul(g).imod(p);
|
||||
if (res.isOne()) {
|
||||
return false;
|
||||
}
|
||||
i.iaddn(1);
|
||||
i.iinc();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -124,10 +117,11 @@ export default {
|
|||
*
|
||||
* Blinded exponentiation computes g**{r(p-1) + x} to compare to y
|
||||
*/
|
||||
x = new BN(x);
|
||||
const r = await random.getRandomBN(new BN(2).shln(pSize - 1), new BN(2).shln(pSize)); // draw r of same size as p-1
|
||||
const rqx = p.subn(1).mul(r).add(x);
|
||||
if (!y.eq(gModP.redPow(rqx))) {
|
||||
x = new BigInteger(x);
|
||||
const two = new BigInteger(2);
|
||||
const r = await random.getRandomBigInteger(two.leftShift(pSize.dec()), two.leftShift(pSize)); // draw r of same size as p-1
|
||||
const rqx = p.dec().imul(r).iadd(x);
|
||||
if (!y.equal(g.modExp(rqx, p))) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
|
||||
/**
|
||||
* @fileoverview Wrapper of an instance of an Elliptic Curve
|
||||
* @requires bn.js
|
||||
* @requires tweetnacl
|
||||
* @requires crypto/public_key/elliptic/key
|
||||
* @requires crypto/random
|
||||
|
@ -28,7 +27,6 @@
|
|||
* @module crypto/public_key/elliptic/curve
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import nacl from 'tweetnacl/nacl-fast-light.js';
|
||||
import random from '../../random';
|
||||
import enums from '../../../enums';
|
||||
|
@ -212,12 +210,14 @@ class Curve {
|
|||
}
|
||||
|
||||
async function generate(curve) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
|
||||
curve = new Curve(curve);
|
||||
const keyPair = await curve.genKeyPair();
|
||||
return {
|
||||
oid: curve.oid,
|
||||
Q: new BN(keyPair.publicKey),
|
||||
d: new BN(keyPair.privateKey),
|
||||
Q: new BigInteger(keyPair.publicKey),
|
||||
d: new BigInteger(keyPair.privateKey),
|
||||
hash: curve.hash,
|
||||
cipher: curve.cipher
|
||||
};
|
||||
|
@ -281,7 +281,6 @@ async function validateStandardParams(algo, oid, Q, d) {
|
|||
* Re-derive public point Q' = dG from private key
|
||||
* Expect Q == Q'
|
||||
*/
|
||||
d = new BN(d);
|
||||
const dG = keyFromPrivate(curve, d).getPublic();
|
||||
if (!dG.eq(Q)) {
|
||||
return false;
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
|
||||
/**
|
||||
* @fileoverview Key encryption and decryption for RFC 6637 ECDH
|
||||
* @requires bn.js
|
||||
* @requires tweetnacl
|
||||
* @requires crypto/public_key/elliptic/curve
|
||||
* @requires crypto/aes_kw
|
||||
|
@ -30,7 +29,6 @@
|
|||
* @module crypto/public_key/elliptic/ecdh
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import nacl from 'tweetnacl/nacl-fast-light.js';
|
||||
import Curve, { jwkToRawPublic, rawPublicToJwk, privateToJwk, validateStandardParams } from './curves';
|
||||
import aes_kw from '../../aes_kw';
|
||||
|
@ -216,10 +214,12 @@ async function genPrivateEphemeralKey(curve, V, Q, d) {
|
|||
* @param {Uint8Array} Q Recipient public key
|
||||
* @param {Uint8Array} d Recipient private key
|
||||
* @param {Uint8Array} fingerprint Recipient fingerprint
|
||||
* @returns {Promise<BN>} Value derived from session key
|
||||
* @returns {Promise<BigInteger>} Value derived from session key
|
||||
* @async
|
||||
*/
|
||||
async function decrypt(oid, kdfParams, V, C, Q, d, fingerprint) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
|
||||
const curve = new Curve(oid);
|
||||
const { sharedKey } = await genPrivateEphemeralKey(curve, V, Q, d);
|
||||
const param = buildEcdhParam(enums.publicKey.ecdh, oid, kdfParams, fingerprint);
|
||||
|
@ -229,7 +229,7 @@ async function decrypt(oid, kdfParams, V, C, Q, d, fingerprint) {
|
|||
try {
|
||||
// Work around old go crypto bug and old OpenPGP.js bug, respectively.
|
||||
const Z = await kdf(kdfParams.hash, sharedKey, cipher[cipher_algo].keySize, param, i === 1, i === 2);
|
||||
return new BN(aes_kw.unwrap(Z, C));
|
||||
return new BigInteger(aes_kw.unwrap(Z, C));
|
||||
} catch (e) {
|
||||
err = e;
|
||||
}
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
|
||||
/**
|
||||
* @fileoverview Implementation of ECDSA following RFC6637 for Openpgpjs
|
||||
* @requires bn.js
|
||||
* @requires web-stream-tools
|
||||
* @requires enums
|
||||
* @requires util
|
||||
|
@ -25,7 +24,6 @@
|
|||
* @module crypto/public_key/elliptic/ecdsa
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import enums from '../../../enums';
|
||||
import util from '../../../util';
|
||||
import random from '../../random';
|
||||
|
@ -283,6 +281,8 @@ async function nodeSign(curve, hash_algo, message, keyPair) {
|
|||
}
|
||||
|
||||
async function nodeVerify(curve, hash_algo, { r, s }, message, publicKey) {
|
||||
const { default: BN } = await import('bn.js');
|
||||
|
||||
const verify = nodeCrypto.createVerify(enums.read(enums.hash, hash_algo));
|
||||
verify.write(message);
|
||||
verify.end();
|
||||
|
|
|
@ -17,12 +17,11 @@
|
|||
|
||||
/**
|
||||
* @fileoverview Algorithms for probabilistic random prime generation
|
||||
* @requires bn.js
|
||||
* @requires crypto/random
|
||||
* @module crypto/public_key/prime
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import util from '../../util';
|
||||
import random from '../random';
|
||||
|
||||
export default {
|
||||
|
@ -32,14 +31,16 @@ export default {
|
|||
/**
|
||||
* Probabilistic random number generator
|
||||
* @param {Integer} bits Bit length of the prime
|
||||
* @param {BN} e Optional RSA exponent to check against the prime
|
||||
* @param {BigInteger} e Optional RSA exponent to check against the prime
|
||||
* @param {Integer} k Optional number of iterations of Miller-Rabin test
|
||||
* @returns BN
|
||||
* @returns BigInteger
|
||||
* @async
|
||||
*/
|
||||
async function randomProbablePrime(bits, e, k) {
|
||||
const min = new BN(1).shln(bits - 1);
|
||||
const thirty = new BN(30);
|
||||
const BigInteger = await util.getBigInteger();
|
||||
const one = new BigInteger(1);
|
||||
const min = one.leftShift(new BigInteger(bits - 1));
|
||||
const thirty = new BigInteger(30);
|
||||
/*
|
||||
* We can avoid any multiples of 3 and 5 by looking at n mod 30
|
||||
* n mod 30 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
||||
|
@ -48,15 +49,15 @@ async function randomProbablePrime(bits, e, k) {
|
|||
*/
|
||||
const adds = [1, 6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 2];
|
||||
|
||||
let n = await random.getRandomBN(min, min.shln(1));
|
||||
const n = await random.getRandomBigInteger(min, min.leftShift(one));
|
||||
let i = n.mod(thirty).toNumber();
|
||||
|
||||
do {
|
||||
n.iaddn(adds[i]);
|
||||
n.iadd(new BigInteger(adds[i]));
|
||||
i = (i + adds[i]) % adds.length;
|
||||
// If reached the maximum, go back to the minimum.
|
||||
if (n.bitLength() > bits) {
|
||||
n = n.mod(min.shln(1)).iadd(min);
|
||||
n.imod(min.leftShift(one)).iadd(min);
|
||||
i = n.mod(thirty).toNumber();
|
||||
}
|
||||
} while (!await isProbablePrime(n, e, k));
|
||||
|
@ -65,20 +66,20 @@ async function randomProbablePrime(bits, e, k) {
|
|||
|
||||
/**
|
||||
* Probabilistic primality testing
|
||||
* @param {BN} n Number to test
|
||||
* @param {BN} e Optional RSA exponent to check against the prime
|
||||
* @param {Integer} k Optional number of iterations of Miller-Rabin test
|
||||
* @param {BigInteger} n Number to test
|
||||
* @param {BigInteger} e Optional RSA exponent to check against the prime
|
||||
* @param {Integer} k Optional number of iterations of Miller-Rabin test
|
||||
* @returns {boolean}
|
||||
* @async
|
||||
*/
|
||||
async function isProbablePrime(n, e, k) {
|
||||
if (e && !n.subn(1).gcd(e).eqn(1)) {
|
||||
if (e && !n.dec().gcd(e).isOne()) {
|
||||
return false;
|
||||
}
|
||||
if (!divisionTest(n)) {
|
||||
if (!await divisionTest(n)) {
|
||||
return false;
|
||||
}
|
||||
if (!fermat(n)) {
|
||||
if (!await fermat(n)) {
|
||||
return false;
|
||||
}
|
||||
if (!await millerRabin(n, k)) {
|
||||
|
@ -91,24 +92,26 @@ async function isProbablePrime(n, e, k) {
|
|||
|
||||
/**
|
||||
* Tests whether n is probably prime or not using Fermat's test with b = 2.
|
||||
* Fails if b^(n-1) mod n === 1.
|
||||
* @param {BN} n Number to test
|
||||
* @param {Integer} b Optional Fermat test base
|
||||
* Fails if b^(n-1) mod n != 1.
|
||||
* @param {BigInteger} n Number to test
|
||||
* @param {BigInteger} b Optional Fermat test base
|
||||
* @returns {boolean}
|
||||
*/
|
||||
function fermat(n, b) {
|
||||
b = b || new BN(2);
|
||||
return b.toRed(BN.mont(n)).redPow(n.subn(1)).fromRed().cmpn(1) === 0;
|
||||
async function fermat(n, b) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
b = b || new BigInteger(2);
|
||||
return b.modExp(n.dec(), n).isOne();
|
||||
}
|
||||
|
||||
function divisionTest(n) {
|
||||
return small_primes.every(m => {
|
||||
return n.modn(m) !== 0;
|
||||
async function divisionTest(n) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
return smallPrimes.every(m => {
|
||||
return n.mod(new BigInteger(m)) !== 0;
|
||||
});
|
||||
}
|
||||
|
||||
// https://github.com/gpg/libgcrypt/blob/master/cipher/primegen.c
|
||||
const small_primes = [
|
||||
const smallPrimes = [
|
||||
7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
|
||||
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
|
||||
103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
|
||||
|
@ -223,45 +226,43 @@ const small_primes = [
|
|||
/**
|
||||
* Tests whether n is probably prime or not using the Miller-Rabin test.
|
||||
* See HAC Remark 4.28.
|
||||
* @param {BN} n Number to test
|
||||
* @param {Integer} k Optional number of iterations of Miller-Rabin test
|
||||
* @param {Function} rand Optional function to generate potential witnesses
|
||||
* @param {BigInteger} n Number to test
|
||||
* @param {Integer} k Optional number of iterations of Miller-Rabin test
|
||||
* @param {Function} rand Optional function to generate potential witnesses
|
||||
* @returns {boolean}
|
||||
* @async
|
||||
*/
|
||||
async function millerRabin(n, k, rand) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
const len = n.bitLength();
|
||||
const red = BN.mont(n);
|
||||
const rone = new BN(1).toRed(red);
|
||||
|
||||
if (!k) {
|
||||
k = Math.max(1, (len / 48) | 0);
|
||||
}
|
||||
|
||||
const n1 = n.subn(1);
|
||||
const rn1 = n1.toRed(red);
|
||||
const n1 = n.dec(); // n - 1
|
||||
|
||||
// Find d and s, (n - 1) = (2 ^ s) * d;
|
||||
let s = 0;
|
||||
while (!n1.testn(s)) { s++; }
|
||||
const d = n.shrn(s);
|
||||
while (!n1.getBit(s)) { s++; }
|
||||
const d = n.rightShift(new BigInteger(s));
|
||||
|
||||
for (; k > 0; k--) {
|
||||
const a = rand ? rand() : await random.getRandomBN(new BN(2), n1);
|
||||
const a = rand ? rand() : await random.getRandomBigInteger(new BigInteger(2), n1);
|
||||
|
||||
let x = a.toRed(red).redPow(d);
|
||||
if (x.eq(rone) || x.eq(rn1)) {
|
||||
let x = a.modExp(d, n);
|
||||
if (x.isOne() || x.equal(n1)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
let i;
|
||||
for (i = 1; i < s; i++) {
|
||||
x = x.redSqr();
|
||||
x = x.mul(x).mod(n);
|
||||
|
||||
if (x.eq(rone)) {
|
||||
if (x.isOne()) {
|
||||
return false;
|
||||
}
|
||||
if (x.eq(rn1)) {
|
||||
if (x.equal(n1)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -17,7 +17,6 @@
|
|||
|
||||
/**
|
||||
* @fileoverview RSA implementation
|
||||
* @requires bn.js
|
||||
* @requires crypto/public_key/prime
|
||||
* @requires crypto/random
|
||||
* @requires config
|
||||
|
@ -25,14 +24,12 @@
|
|||
* @module crypto/public_key/rsa
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import prime from './prime';
|
||||
import random from '../random';
|
||||
import config from '../../config';
|
||||
import util from '../../util';
|
||||
import pkcs1 from '../pkcs1';
|
||||
import enums from '../../enums';
|
||||
import type_mpi from '../../type/mpi';
|
||||
|
||||
const webCrypto = util.getWebCrypto();
|
||||
const nodeCrypto = util.getNodeCrypto();
|
||||
|
@ -171,16 +168,18 @@ export default {
|
|||
* When possible, webCrypto or nodeCrypto is used. Otherwise, primes are generated using
|
||||
* 40 rounds of the Miller-Rabin probabilistic random prime generation algorithm.
|
||||
* @see module:crypto/public_key/prime
|
||||
* @param {Integer} B RSA bit length
|
||||
* @param {String} E RSA public exponent in hex string
|
||||
* @returns {{n: BN, e: BN, d: BN,
|
||||
* p: BN, q: BN, u: BN}} RSA public modulus, RSA public exponent, RSA private exponent,
|
||||
* RSA private prime p, RSA private prime q, u = q ** -1 mod p
|
||||
* @param {Integer} bits RSA bit length
|
||||
* @param {Integer} e RSA public exponent
|
||||
* @returns {{n, e, d,
|
||||
* p, q ,u: BigInteger}} RSA public modulus, RSA public exponent, RSA private exponent,
|
||||
* RSA private prime p, RSA private prime q, u = q ** 1 mod p
|
||||
* @async
|
||||
*/
|
||||
generate: async function(B, E) {
|
||||
generate: async function(bits, e) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
|
||||
let key;
|
||||
E = new BN(E, 16);
|
||||
e = new BigInteger(e);
|
||||
|
||||
// Native RSA keygen using Web Crypto
|
||||
if (util.getWebCrypto()) {
|
||||
|
@ -190,8 +189,8 @@ export default {
|
|||
// current standard spec
|
||||
keyGenOpt = {
|
||||
name: 'RSASSA-PKCS1-v1_5',
|
||||
modulusLength: B, // the specified keysize in bits
|
||||
publicExponent: E.toArrayLike(Uint8Array), // take three bytes (max 65537) for exponent
|
||||
modulusLength: bits, // the specified keysize in bits
|
||||
publicExponent: e.toUint8Array(), // take three bytes (max 65537) for exponent
|
||||
hash: {
|
||||
name: 'SHA-1' // not required for actual RSA keys, but for crypto api 'sign' and 'verify'
|
||||
}
|
||||
|
@ -202,8 +201,8 @@ export default {
|
|||
// outdated spec implemented by old Webkit
|
||||
keyGenOpt = {
|
||||
name: 'RSA-OAEP',
|
||||
modulusLength: B, // the specified keysize in bits
|
||||
publicExponent: E.toArrayLike(Uint8Array), // take three bytes (max 65537) for exponent
|
||||
modulusLength: bits, // the specified keysize in bits
|
||||
publicExponent: e.toUint8Array(), // take three bytes (max 65537) for exponent
|
||||
hash: {
|
||||
name: 'SHA-1' // not required for actual RSA keys, but for crypto api 'sign' and 'verify'
|
||||
}
|
||||
|
@ -224,19 +223,19 @@ export default {
|
|||
}
|
||||
// map JWK parameters to BN
|
||||
key = {};
|
||||
key.n = new BN(util.b64ToUint8Array(jwk.n));
|
||||
key.e = E;
|
||||
key.d = new BN(util.b64ToUint8Array(jwk.d));
|
||||
key.n = new BigInteger(util.b64ToUint8Array(jwk.n));
|
||||
key.e = e;
|
||||
key.d = new BigInteger(util.b64ToUint8Array(jwk.d));
|
||||
// switch p and q
|
||||
key.p = new BN(util.b64ToUint8Array(jwk.q));
|
||||
key.q = new BN(util.b64ToUint8Array(jwk.p));
|
||||
key.p = new BigInteger(util.b64ToUint8Array(jwk.q));
|
||||
key.q = new BigInteger(util.b64ToUint8Array(jwk.p));
|
||||
// Since p and q are switched in places, we could keep u
|
||||
key.u = new BN(util.b64ToUint8Array(jwk.qi));
|
||||
key.u = new BigInteger(util.b64ToUint8Array(jwk.qi));
|
||||
return key;
|
||||
} else if (util.getNodeCrypto() && nodeCrypto.generateKeyPair && RSAPrivateKey) {
|
||||
const opts = {
|
||||
modulusLength: Number(B.toString(10)),
|
||||
publicExponent: Number(E.toString(10)),
|
||||
modulusLength: bits,
|
||||
publicExponent: e.toNumber(),
|
||||
publicKeyEncoding: { type: 'pkcs1', format: 'der' },
|
||||
privateKeyEncoding: { type: 'pkcs1', format: 'der' }
|
||||
};
|
||||
|
@ -266,23 +265,23 @@ export default {
|
|||
// RSA keygen fallback using 40 iterations of the Miller-Rabin test
|
||||
// See https://stackoverflow.com/a/6330138 for justification
|
||||
// Also see section C.3 here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST
|
||||
let q = await prime.randomProbablePrime(B - (B >> 1), E, 40);
|
||||
let p = await prime.randomProbablePrime(B >> 1, E, 40);
|
||||
let q = await prime.randomProbablePrime(bits - (bits >> 1), e, 40);
|
||||
let p = await prime.randomProbablePrime(bits >> 1, e, 40);
|
||||
|
||||
if (q.cmp(p) < 0) {
|
||||
if (q.lt(p)) {
|
||||
[p, q] = [q, p];
|
||||
}
|
||||
|
||||
const phi = p.subn(1).mul(q.subn(1));
|
||||
const phi = p.dec().imul(q.dec());
|
||||
return {
|
||||
n: p.mul(q),
|
||||
e: E,
|
||||
d: E.invm(phi),
|
||||
e,
|
||||
d: e.modInv(phi),
|
||||
p: p,
|
||||
q: q,
|
||||
// dp: d.mod(p.subn(1)),
|
||||
// dq: d.mod(q.subn(1)),
|
||||
u: p.invm(q)
|
||||
u: p.modInv(q)
|
||||
};
|
||||
},
|
||||
|
||||
|
@ -298,25 +297,25 @@ export default {
|
|||
* @async
|
||||
*/
|
||||
validateParams: async function (n, e, d, p, q, u) {
|
||||
n = new BN(n);
|
||||
p = new BN(p);
|
||||
q = new BN(q);
|
||||
const BigInteger = await util.getBigInteger();
|
||||
n = new BigInteger(n);
|
||||
p = new BigInteger(p);
|
||||
q = new BigInteger(q);
|
||||
|
||||
// expect pq = n
|
||||
if (!p.mul(q).eq(n)) {
|
||||
if (!p.mul(q).equal(n)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const one = new BN(1);
|
||||
const two = new BN(2);
|
||||
const two = new BigInteger(2);
|
||||
// expect p*u = 1 mod q
|
||||
u = new BN(u);
|
||||
if (!p.mul(u).umod(q).eq(one)) {
|
||||
u = new BigInteger(u);
|
||||
if (!p.mul(u).mod(q).isOne()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
e = new BN(e);
|
||||
d = new BN(d);
|
||||
e = new BigInteger(e);
|
||||
d = new BigInteger(d);
|
||||
/**
|
||||
* In RSA pkcs#1 the exponents (d, e) are inverses modulo lcm(p-1, q-1)
|
||||
* We check that [de = 1 mod (p-1)] and [de = 1 mod (q-1)]
|
||||
|
@ -324,10 +323,11 @@ export default {
|
|||
*
|
||||
* We blind the multiplication with r, and check that rde = r mod lcm(p-1, q-1)
|
||||
*/
|
||||
const r = await random.getRandomBN(two, two.shln(n.bitLength() / 3)); // r in [ 2, 2^{|n|/3} ) < p and q
|
||||
const nSizeOver3 = new BigInteger(Math.floor(n.bitLength() / 3));
|
||||
const r = await random.getRandomBigInteger(two, two.leftShift(nSizeOver3)); // r in [ 2, 2^{|n|/3} ) < p and q
|
||||
const rde = r.mul(d).mul(e);
|
||||
|
||||
const areInverses = rde.umod(p.sub(one)).eq(r) && rde.umod(q.sub(one)).eq(r);
|
||||
const areInverses = rde.mod(p.dec()).equal(r) && rde.mod(q.dec()).equal(r);
|
||||
if (!areInverses) {
|
||||
return false;
|
||||
}
|
||||
|
@ -336,14 +336,14 @@ export default {
|
|||
},
|
||||
|
||||
bnSign: async function (hash_algo, n, d, hashed) {
|
||||
n = new BN(n);
|
||||
const m = new BN(await pkcs1.emsa.encode(hash_algo, hashed, n.byteLength()), 16);
|
||||
d = new BN(d);
|
||||
if (n.cmp(m) <= 0) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
n = new BigInteger(n);
|
||||
const m = new BigInteger(await pkcs1.emsa.encode(hash_algo, hashed, n.byteLength()));
|
||||
d = new BigInteger(d);
|
||||
if (m.gte(n)) {
|
||||
throw new Error('Message size cannot exceed modulus size');
|
||||
}
|
||||
const nred = new BN.red(n);
|
||||
return m.toRed(nred).redPow(d).toArrayLike(Uint8Array, 'be', n.byteLength());
|
||||
return m.modExp(d, n).toUint8Array('be', n.byteLength());
|
||||
},
|
||||
|
||||
webSign: async function (hash_name, data, n, e, d, p, q, u) {
|
||||
|
@ -353,7 +353,7 @@ export default {
|
|||
* OpenPGP.js used to generate RSA keys the wrong way around (p > q), and still
|
||||
* does if the underlying Web Crypto does so (e.g. old MS Edge 50% of the time).
|
||||
*/
|
||||
const jwk = privateToJwk(n, e, d, p, q, u);
|
||||
const jwk = await privateToJwk(n, e, d, p, q, u);
|
||||
const algo = {
|
||||
name: "RSASSA-PKCS1-v1_5",
|
||||
hash: { name: hash_name }
|
||||
|
@ -364,6 +364,7 @@ export default {
|
|||
},
|
||||
|
||||
nodeSign: async function (hash_algo, data, n, e, d, p, q, u) {
|
||||
const { default: BN } = await import('bn.js');
|
||||
const pBNum = new BN(p);
|
||||
const qBNum = new BN(q);
|
||||
const dBNum = new BN(d);
|
||||
|
@ -396,16 +397,16 @@ export default {
|
|||
},
|
||||
|
||||
bnVerify: async function (hash_algo, s, n, e, hashed) {
|
||||
n = new BN(n);
|
||||
s = new BN(s);
|
||||
e = new BN(e);
|
||||
if (n.cmp(s) <= 0) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
n = new BigInteger(n);
|
||||
s = new BigInteger(s);
|
||||
e = new BigInteger(e);
|
||||
if (s.gte(n)) {
|
||||
throw new Error('Signature size cannot exceed modulus size');
|
||||
}
|
||||
const nred = new BN.red(n);
|
||||
const EM1 = s.toRed(nred).redPow(e).toArrayLike(Uint8Array, 'be', n.byteLength());
|
||||
const EM1 = s.modExp(e, n).toUint8Array('be', n.byteLength());
|
||||
const EM2 = await pkcs1.emsa.encode(hash_algo, hashed, n.byteLength());
|
||||
return util.uint8ArrayToHex(EM1) === EM2;
|
||||
return util.equalsUint8Array(EM1, EM2);
|
||||
},
|
||||
|
||||
webVerify: async function (hash_name, data, s, n, e) {
|
||||
|
@ -419,6 +420,8 @@ export default {
|
|||
},
|
||||
|
||||
nodeVerify: async function (hash_algo, data, s, n, e) {
|
||||
const { default: BN } = await import('bn.js');
|
||||
|
||||
const verify = nodeCrypto.createVerify(enums.read(enums.hash, hash_algo));
|
||||
verify.write(data);
|
||||
verify.end();
|
||||
|
@ -443,6 +446,8 @@ export default {
|
|||
},
|
||||
|
||||
nodeEncrypt: async function (data, n, e) {
|
||||
const { default: BN } = await import('bn.js');
|
||||
|
||||
const keyObject = {
|
||||
modulus: new BN(n),
|
||||
publicExponent: new BN(e)
|
||||
|
@ -461,18 +466,19 @@ export default {
|
|||
},
|
||||
|
||||
bnEncrypt: async function (data, n, e) {
|
||||
n = new BN(n);
|
||||
data = new type_mpi(await pkcs1.eme.encode(util.uint8ArrayToStr(data), n.byteLength()));
|
||||
data = data.toBN();
|
||||
e = new BN(e);
|
||||
if (n.cmp(data) <= 0) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
n = new BigInteger(n);
|
||||
data = new BigInteger(await pkcs1.eme.encode(data, n.byteLength()));
|
||||
e = new BigInteger(e);
|
||||
if (data.gte(n)) {
|
||||
throw new Error('Message size cannot exceed modulus size');
|
||||
}
|
||||
const nred = new BN.red(n);
|
||||
return data.toRed(nred).redPow(e).toArrayLike(Uint8Array, 'be', n.byteLength());
|
||||
return data.modExp(e, n).toUint8Array('be', n.byteLength());
|
||||
},
|
||||
|
||||
nodeDecrypt: function (data, n, e, d, p, q, u) {
|
||||
nodeDecrypt: async function (data, n, e, d, p, q, u) {
|
||||
const { default: BN } = await import('bn.js');
|
||||
|
||||
const pBNum = new BN(p);
|
||||
const qBNum = new BN(q);
|
||||
const dBNum = new BN(d);
|
||||
|
@ -502,50 +508,46 @@ export default {
|
|||
key = { key: pem, padding: nodeCrypto.constants.RSA_PKCS1_PADDING };
|
||||
}
|
||||
try {
|
||||
return util.uint8ArrayToStr(nodeCrypto.privateDecrypt(key, data));
|
||||
return new Uint8Array(nodeCrypto.privateDecrypt(key, data));
|
||||
} catch (err) {
|
||||
throw new Error('Decryption error');
|
||||
}
|
||||
},
|
||||
|
||||
bnDecrypt: async function(data, n, e, d, p, q, u) {
|
||||
data = new BN(data);
|
||||
n = new BN(n);
|
||||
e = new BN(e);
|
||||
d = new BN(d);
|
||||
p = new BN(p);
|
||||
q = new BN(q);
|
||||
u = new BN(u);
|
||||
if (n.cmp(data) <= 0) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
data = new BigInteger(data);
|
||||
n = new BigInteger(n);
|
||||
e = new BigInteger(e);
|
||||
d = new BigInteger(d);
|
||||
p = new BigInteger(p);
|
||||
q = new BigInteger(q);
|
||||
u = new BigInteger(u);
|
||||
if (data.gte(n)) {
|
||||
throw new Error('Data too large.');
|
||||
}
|
||||
const dq = d.mod(q.subn(1)); // d mod (q-1)
|
||||
const dp = d.mod(p.subn(1)); // d mod (p-1)
|
||||
const pred = new BN.red(p);
|
||||
const qred = new BN.red(q);
|
||||
const nred = new BN.red(n);
|
||||
const dq = d.mod(q.dec()); // d mod (q-1)
|
||||
const dp = d.mod(p.dec()); // d mod (p-1)
|
||||
|
||||
let blinder;
|
||||
let unblinder;
|
||||
if (config.rsaBlinding) {
|
||||
unblinder = (await random.getRandomBN(new BN(2), n)).toRed(nred);
|
||||
blinder = unblinder.redInvm().redPow(e);
|
||||
data = data.toRed(nred).redMul(blinder).fromRed();
|
||||
unblinder = (await random.getRandomBigInteger(new BigInteger(2), n)).mod(n);
|
||||
blinder = unblinder.modInv(n).modExp(e, n);
|
||||
data = data.mul(blinder).mod(n);
|
||||
}
|
||||
|
||||
const mp = data.toRed(pred).redPow(dp);
|
||||
const mq = data.toRed(qred).redPow(dq);
|
||||
const t = mq.redSub(mp.fromRed().toRed(qred));
|
||||
const h = u.toRed(qred).redMul(t).fromRed();
|
||||
const mp = data.modExp(dp, p); // data**{d mod (q-1)} mod p
|
||||
const mq = data.modExp(dq, q); // data**{d mod (p-1)} mod q
|
||||
const h = u.mul(mq.sub(mp)).mod(q); // u * (mq-mp) mod q (operands already < q)
|
||||
|
||||
let result = h.mul(p).add(mp).toRed(nred);
|
||||
let result = h.mul(p).add(mp); // result < n due to relations above
|
||||
|
||||
if (config.rsaBlinding) {
|
||||
result = result.redMul(unblinder);
|
||||
result = result.mul(unblinder).mod(n);
|
||||
}
|
||||
|
||||
result = new type_mpi(result).toUint8Array('be', n.byteLength()); // preserve leading zeros
|
||||
return pkcs1.eme.decode(util.Uint8Array_to_str(result));
|
||||
return pkcs1.eme.decode(result.toUint8Array('be', n.byteLength()));
|
||||
},
|
||||
|
||||
prime: prime
|
||||
|
@ -561,15 +563,16 @@ export default {
|
|||
* @param {Uint8Array} q
|
||||
* @param {Uint8Array} u
|
||||
*/
|
||||
function privateToJwk(n, e, d, p, q, u) {
|
||||
const pBNum = new BN(p);
|
||||
const qBNum = new BN(q);
|
||||
const dBNum = new BN(d);
|
||||
async function privateToJwk(n, e, d, p, q, u) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
const pNum = new BigInteger(p);
|
||||
const qNum = new BigInteger(q);
|
||||
const dNum = new BigInteger(d);
|
||||
|
||||
let dq = dBNum.mod(qBNum.subn(1)); // d mod (q-1)
|
||||
let dp = dBNum.mod(pBNum.subn(1)); // d mod (p-1)
|
||||
dp = dp.toArrayLike(Uint8Array);
|
||||
dq = dq.toArrayLike(Uint8Array);
|
||||
let dq = dNum.mod(qNum.dec()); // d mod (q-1)
|
||||
let dp = dNum.mod(pNum.dec()); // d mod (p-1)
|
||||
dp = dp.toUint8Array();
|
||||
dq = dq.toUint8Array();
|
||||
return {
|
||||
kty: 'RSA',
|
||||
n: util.uint8ArrayToB64(n, true),
|
||||
|
|
|
@ -19,12 +19,9 @@
|
|||
|
||||
/**
|
||||
* @fileoverview Provides tools for retrieving secure randomness from browsers or Node.js
|
||||
* @requires bn.js
|
||||
* @requires util
|
||||
* @module crypto/random
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import util from '../util';
|
||||
|
||||
// Do not use util.getNodeCrypto because we need this regardless of useNative setting
|
||||
|
@ -122,14 +119,16 @@ export default {
|
|||
},
|
||||
|
||||
/**
|
||||
* Create a secure random MPI that is greater than or equal to min and less than max.
|
||||
* @param {module:type/mpi} min Lower bound, included
|
||||
* @param {module:type/mpi} max Upper bound, excluded
|
||||
* @returns {module:BN} Random MPI
|
||||
* Create a secure random BigInteger that is greater than or equal to min and less than max.
|
||||
* @param {module:BigInteger} min Lower bound, included
|
||||
* @param {module:BigInteger} max Upper bound, excluded
|
||||
* @returns {module:BigInteger} Random BigInteger
|
||||
* @async
|
||||
*/
|
||||
getRandomBN: async function(min, max) {
|
||||
if (max.cmp(min) <= 0) {
|
||||
getRandomBigInteger: async function(min, max) {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
|
||||
if (max.lt(min)) {
|
||||
throw new Error('Illegal parameter value: max <= min');
|
||||
}
|
||||
|
||||
|
@ -139,7 +138,7 @@ export default {
|
|||
// Using a while loop is necessary to avoid bias introduced by the mod operation.
|
||||
// However, we request 64 extra random bits so that the bias is negligible.
|
||||
// Section B.1.1 here: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
|
||||
const r = new BN(await this.getRandomBytes(bytes + 8));
|
||||
const r = new BigInteger(await this.getRandomBytes(bytes + 8));
|
||||
return r.mod(modulus).add(min);
|
||||
},
|
||||
|
||||
|
|
|
@ -42,12 +42,12 @@ export default {
|
|||
return publicKey.rsa.verify(hash_algo, data, m, n, e, hashed);
|
||||
}
|
||||
case enums.publicKey.dsa: {
|
||||
const r = msg_MPIs[0].toBN();
|
||||
const s = msg_MPIs[1].toBN();
|
||||
const p = pub_MPIs[0].toBN();
|
||||
const q = pub_MPIs[1].toBN();
|
||||
const g = pub_MPIs[2].toBN();
|
||||
const y = pub_MPIs[3].toBN();
|
||||
const r = await msg_MPIs[0].toBigInteger();
|
||||
const s = await msg_MPIs[1].toBigInteger();
|
||||
const p = await pub_MPIs[0].toBigInteger();
|
||||
const q = await pub_MPIs[1].toBigInteger();
|
||||
const g = await pub_MPIs[2].toBigInteger();
|
||||
const y = await pub_MPIs[3].toBigInteger();
|
||||
return publicKey.dsa.verify(hash_algo, r, s, hashed, g, p, q, y);
|
||||
}
|
||||
case enums.publicKey.ecdsa: {
|
||||
|
@ -101,10 +101,10 @@ export default {
|
|||
return util.uint8ArrayToMpi(signature);
|
||||
}
|
||||
case enums.publicKey.dsa: {
|
||||
const p = key_params[0].toBN();
|
||||
const q = key_params[1].toBN();
|
||||
const g = key_params[2].toBN();
|
||||
const x = key_params[4].toBN();
|
||||
const p = await key_params[0].toBigInteger();
|
||||
const q = await key_params[1].toBigInteger();
|
||||
const g = await key_params[2].toBigInteger();
|
||||
const x = await key_params[4].toBigInteger();
|
||||
const signature = await publicKey.dsa.sign(hash_algo, hashed, g, p, q, x);
|
||||
return util.concatUint8Array([
|
||||
util.uint8ArrayToMpi(signature.r),
|
||||
|
|
|
@ -103,10 +103,11 @@ class PublicKeyEncryptedSessionKeyPacket {
|
|||
* @async
|
||||
*/
|
||||
async encrypt(key) {
|
||||
let data = String.fromCharCode(enums.write(enums.symmetric, this.sessionKeyAlgorithm));
|
||||
|
||||
data += util.uint8ArrayToStr(this.sessionKey);
|
||||
data += util.uint8ArrayToStr(util.writeChecksum(this.sessionKey));
|
||||
const data = util.concatUint8Array([
|
||||
new Uint8Array([enums.write(enums.symmetric, this.sessionKeyAlgorithm)]),
|
||||
this.sessionKey,
|
||||
util.writeChecksum(this.sessionKey)
|
||||
]);
|
||||
const algo = enums.write(enums.publicKey, this.publicKeyAlgorithm);
|
||||
this.encrypted = await crypto.publicKeyEncrypt(
|
||||
algo, key.params, data, key.getFingerprintBytes());
|
||||
|
@ -130,14 +131,13 @@ class PublicKeyEncryptedSessionKeyPacket {
|
|||
throw new Error('Decryption error');
|
||||
}
|
||||
const decoded = await crypto.publicKeyDecrypt(algo, key.params, this.encrypted, key.getFingerprintBytes());
|
||||
const checksum = util.strToUint8Array(decoded.substr(decoded.length - 2));
|
||||
key = util.strToUint8Array(decoded.substring(1, decoded.length - 2));
|
||||
|
||||
if (!util.equalsUint8Array(checksum, util.writeChecksum(key))) {
|
||||
const checksum = decoded.subarray(decoded.length - 2);
|
||||
const sessionKey = decoded.subarray(1, decoded.length - 2);
|
||||
if (!util.equalsUint8Array(checksum, util.writeChecksum(sessionKey))) {
|
||||
throw new Error('Decryption error');
|
||||
} else {
|
||||
this.sessionKey = key;
|
||||
this.sessionKeyAlgorithm = enums.read(enums.symmetric, decoded.charCodeAt(0));
|
||||
this.sessionKey = sessionKey;
|
||||
this.sessionKeyAlgorithm = enums.read(enums.symmetric, decoded[0]);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -28,12 +28,9 @@
|
|||
* An MPI consists of two pieces: a two-octet scalar that is the length
|
||||
* of the MPI in bits followed by a string of octets that contain the
|
||||
* actual integer.
|
||||
* @requires bn.js
|
||||
* @requires util
|
||||
* @module type/mpi
|
||||
*/
|
||||
|
||||
import BN from 'bn.js';
|
||||
import util from '../util';
|
||||
|
||||
class MPI {
|
||||
|
@ -41,7 +38,9 @@ class MPI {
|
|||
/** An implementation dependent integer */
|
||||
if (data instanceof MPI) {
|
||||
this.data = data.data;
|
||||
} else if (BN.isBN(data)) {
|
||||
} else if (util.isBigInteger(data)) {
|
||||
this.fromBigInteger(data);
|
||||
} else if (util.isBN(data)) {
|
||||
this.fromBN(data);
|
||||
} else if (util.isUint8Array(data)) {
|
||||
this.fromUint8Array(data);
|
||||
|
@ -121,8 +120,13 @@ class MPI {
|
|||
this.fromUint8Array(util.strToUint8Array(str), endian);
|
||||
}
|
||||
|
||||
toBN() {
|
||||
return new BN(this.toUint8Array());
|
||||
async toBigInteger() {
|
||||
const BigInteger = await util.getBigInteger();
|
||||
return new BigInteger(this.toUint8Array());
|
||||
}
|
||||
|
||||
fromBigInteger(n) {
|
||||
this.data = n.toUint8Array();
|
||||
}
|
||||
|
||||
fromBN(bn) {
|
||||
|
|
27
src/util.js
27
src/util.js
|
@ -31,6 +31,7 @@ import stream from 'web-stream-tools';
|
|||
import config from './config';
|
||||
import util from './util'; // re-import module to access util functions
|
||||
import b64 from './encoding/base64';
|
||||
import { getBigInteger } from './biginteger';
|
||||
|
||||
export default {
|
||||
isString: function(data) {
|
||||
|
@ -41,6 +42,18 @@ export default {
|
|||
return Array.prototype.isPrototypeOf(data);
|
||||
},
|
||||
|
||||
isBigInteger: function(data) {
|
||||
return data !== null && typeof data === 'object' && data.value &&
|
||||
// eslint-disable-next-line valid-typeof
|
||||
(typeof data.value === 'bigint' || this.isBN(data.value));
|
||||
},
|
||||
|
||||
isBN: function(data) {
|
||||
return data !== null && typeof data === 'object' &&
|
||||
(data.constructor.name === 'BN' ||
|
||||
(data.constructor.wordSize === 26 && Array.isArray(data.words))); // taken from BN.isBN()
|
||||
},
|
||||
|
||||
isUint8Array: stream.isUint8Array,
|
||||
|
||||
isStream: stream.isStream,
|
||||
|
@ -519,6 +532,20 @@ export default {
|
|||
typeof globalThis.process.versions === 'object';
|
||||
},
|
||||
|
||||
/**
|
||||
* Detect native BigInt support
|
||||
*/
|
||||
detectBigInt: () => typeof BigInt !== 'undefined',
|
||||
|
||||
/**
|
||||
* Get BigInteger class
|
||||
* It wraps the native BigInt type if it's available
|
||||
* Otherwise it relies on bn.js
|
||||
* @returns {BigInteger}
|
||||
* @async
|
||||
*/
|
||||
getBigInteger,
|
||||
|
||||
/**
|
||||
* Get native Node.js crypto api. The default configuration is to use
|
||||
* the api when available. But it can also be deactivated with config.useNative
|
||||
|
|
|
@ -354,28 +354,24 @@ module.exports = () => describe('API functional testing', function() {
|
|||
testAESGCM("12345678901234567890123456789012345678901234567890", false);
|
||||
});
|
||||
|
||||
it('Asymmetric using RSA with eme_pkcs1 padding', function () {
|
||||
const symmKey = util.uint8ArrayToStr(crypto.generateSessionKey('aes256'));
|
||||
crypto.publicKeyEncrypt(1, RSApubMPIs, symmKey).then(RSAEncryptedData => {
|
||||
it('Asymmetric using RSA with eme_pkcs1 padding', async function () {
|
||||
const symmKey = await crypto.generateSessionKey('aes256');
|
||||
return crypto.publicKeyEncrypt(1, RSApubMPIs, symmKey).then(RSAEncryptedData => {
|
||||
return crypto.publicKeyDecrypt(
|
||||
1, RSApubMPIs.concat(RSAsecMPIs), RSAEncryptedData
|
||||
).then(data => {
|
||||
data = new openpgp.MPI(data).write();
|
||||
data = util.uint8ArrayToStr(data.subarray(2, data.length));
|
||||
expect(data).to.equal(symmKey);
|
||||
expect(data).to.deep.equal(symmKey);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
it('Asymmetric using Elgamal with eme_pkcs1 padding', function () {
|
||||
const symmKey = util.uint8ArrayToStr(crypto.generateSessionKey('aes256'));
|
||||
crypto.publicKeyEncrypt(16, ElgamalpubMPIs, symmKey).then(ElgamalEncryptedData => {
|
||||
it('Asymmetric using Elgamal with eme_pkcs1 padding', async function () {
|
||||
const symmKey = await crypto.generateSessionKey('aes256');
|
||||
return crypto.publicKeyEncrypt(16, ElgamalpubMPIs, symmKey).then(ElgamalEncryptedData => {
|
||||
return crypto.publicKeyDecrypt(
|
||||
16, ElgamalpubMPIs.concat(ElgamalsecMPIs), ElgamalEncryptedData
|
||||
).then(data => {
|
||||
data = new openpgp.MPI(data).write();
|
||||
data = util.uint8ArrayToStr(data.subarray(2, data.length));
|
||||
expect(data).to.equal(symmKey);
|
||||
expect(data).to.deep.equal(symmKey);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
|
|
@ -3,37 +3,13 @@ const openpgp = typeof window !== 'undefined' && window.openpgp ? window.openpgp
|
|||
const expect = require('chai').expect;
|
||||
|
||||
module.exports = () => describe('PKCS5 padding', function() {
|
||||
function repeat(pattern, count) {
|
||||
let result = '';
|
||||
for (let k = 0; k < count; ++k) {
|
||||
result += pattern;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
const pkcs5 = openpgp.crypto.pkcs5;
|
||||
it('Add padding', function () {
|
||||
let s = '';
|
||||
while (s.length < 16) {
|
||||
const r = pkcs5.encode(s);
|
||||
// 0..7 -> 8, 8..15 -> 16
|
||||
const l = Math.ceil((s.length + 1) / 8) * 8;
|
||||
const c = l - s.length;
|
||||
expect(r.length).to.equal(l);
|
||||
expect(c).is.at.least(1).is.at.most(8);
|
||||
expect(r.substr(-1)).to.equal(String.fromCharCode(c));
|
||||
s += ' ';
|
||||
}
|
||||
});
|
||||
it('Remove padding', function () {
|
||||
for (let k = 1; k <= 8; ++k) {
|
||||
const s = repeat(' ', 8 - k);
|
||||
const r = s + repeat(String.fromCharCode(k), k);
|
||||
const t = pkcs5.decode(r);
|
||||
expect(t).to.equal(s);
|
||||
}
|
||||
});
|
||||
it('Invalid padding', function () {
|
||||
expect(function () { pkcs5.decode(' '); }).to.throw(Error, /Invalid padding/);
|
||||
expect(function () { pkcs5.decode(''); }).to.throw(Error, /Invalid padding/);
|
||||
it('Add and remove padding', function () {
|
||||
const m = new Uint8Array([0,1,2,3,4,5,6,7,8]);
|
||||
const padded = pkcs5.encode(m);
|
||||
const unpadded = pkcs5.decode(padded);
|
||||
expect(padded[padded.length - 1]).to.equal(7);
|
||||
expect(padded.length % 8).to.equal(0);
|
||||
expect(unpadded).to.deep.equal(m);
|
||||
});
|
||||
});
|
||||
|
|
|
@ -11,7 +11,7 @@ const native = openpgp.util.getWebCrypto() || openpgp.util.getNodeCrypto();
|
|||
module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptography with native crypto', function () {
|
||||
it('generate rsa key', async function() {
|
||||
const bits = openpgp.util.getWebCryptoAll() ? 2048 : 1024;
|
||||
const keyObject = await openpgp.crypto.publicKey.rsa.generate(bits, "10001");
|
||||
const keyObject = await openpgp.crypto.publicKey.rsa.generate(bits, 65537);
|
||||
expect(keyObject.n).to.exist;
|
||||
expect(keyObject.e).to.exist;
|
||||
expect(keyObject.d).to.exist;
|
||||
|
@ -47,11 +47,11 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
|
|||
const p = keyParams[3].toUint8Array();
|
||||
const q = keyParams[4].toUint8Array();
|
||||
const u = keyParams[5].toUint8Array();
|
||||
const message = openpgp.util.uint8ArrayToStr(await openpgp.crypto.generateSessionKey('aes256'));
|
||||
const encrypted = await openpgp.crypto.publicKey.rsa.encrypt(openpgp.util.strToUint8Array(message), n, e);
|
||||
const message = await openpgp.crypto.generateSessionKey('aes256');
|
||||
const encrypted = await openpgp.crypto.publicKey.rsa.encrypt(message, n, e);
|
||||
const result = new openpgp.MPI(encrypted);
|
||||
const decrypted = await openpgp.crypto.publicKey.rsa.decrypt(result.toUint8Array(), n, e, d, p, q, u);
|
||||
expect(decrypted).to.be.equal(message);
|
||||
expect(decrypted).to.deep.equal(message);
|
||||
});
|
||||
|
||||
it('decrypt nodeCrypto by bnCrypto and vice versa', async function() {
|
||||
|
@ -66,15 +66,13 @@ module.exports = () => (!native ? describe.skip : describe)('basic RSA cryptogra
|
|||
const p = keyParams[3].toUint8Array();
|
||||
const q = keyParams[4].toUint8Array();
|
||||
const u = keyParams[5].toUint8Array();
|
||||
const message = openpgp.util.uint8ArrayToStr(await openpgp.crypto.generateSessionKey('aes256'));
|
||||
const encryptedBn = await openpgp.crypto.publicKey.rsa.bnEncrypt(openpgp.util.strToUint8Array(message), n, e);
|
||||
const resultBN = new openpgp.MPI(encryptedBn);
|
||||
const decrypted1 = await openpgp.crypto.publicKey.rsa.nodeDecrypt(resultBN.toUint8Array(), n, e, d, p, q, u);
|
||||
expect(decrypted1).to.be.equal(message);
|
||||
const encryptedNode = await openpgp.crypto.publicKey.rsa.nodeEncrypt(openpgp.util.strToUint8Array(message), n, e);
|
||||
const resultNode = new openpgp.MPI(encryptedNode);
|
||||
const decrypted2 = await openpgp.crypto.publicKey.rsa.bnDecrypt(resultNode.toUint8Array(), n, e, d, p, q, u);
|
||||
expect(decrypted2).to.be.equal(message);
|
||||
const message = await openpgp.crypto.generateSessionKey('aes256');
|
||||
const encryptedBn = await openpgp.crypto.publicKey.rsa.bnEncrypt(message, n, e);
|
||||
const decrypted1 = await openpgp.crypto.publicKey.rsa.nodeDecrypt(encryptedBn, n, e, d, p, q, u);
|
||||
expect(decrypted1).to.deep.equal(message);
|
||||
const encryptedNode = await openpgp.crypto.publicKey.rsa.nodeEncrypt(message, n, e);
|
||||
const decrypted2 = await openpgp.crypto.publicKey.rsa.bnDecrypt(encryptedNode, n, e, d, p, q, u);
|
||||
expect(decrypted2).to.deep.equal(message);
|
||||
});
|
||||
|
||||
it('compare webCrypto and bn math sign', async function() {
|
||||
|
|
168
test/general/biginteger.js
Normal file
168
test/general/biginteger.js
Normal file
|
@ -0,0 +1,168 @@
|
|||
const openpgp = typeof window !== 'undefined' && window.openpgp ? window.openpgp : require('../..');
|
||||
const BN = require('bn.js');
|
||||
const chai = require('chai');
|
||||
chai.use(require('chai-as-promised'));
|
||||
|
||||
const expect = chai.expect;
|
||||
let BigInteger;
|
||||
|
||||
async function getRandomBN(min, max) {
|
||||
if (max.cmp(min) <= 0) {
|
||||
throw new Error('Illegal parameter value: max <= min');
|
||||
}
|
||||
|
||||
const modulus = max.sub(min);
|
||||
const bytes = modulus.byteLength();
|
||||
const r = new BN(await openpgp.crypto.random.getRandomBytes(bytes + 8));
|
||||
return r.mod(modulus).add(min);
|
||||
}
|
||||
|
||||
module.exports = () => describe('BigInteger interface', function() {
|
||||
before(async () => {
|
||||
BigInteger = await openpgp.util.getBigInteger();
|
||||
});
|
||||
|
||||
it('constructor throws on undefined input', function() {
|
||||
expect(() => new BigInteger()).to.throw('Invalid BigInteger input');
|
||||
});
|
||||
|
||||
|
||||
it('constructor supports strings', function() {
|
||||
const input = '417653931840771530406225971293556769925351769207235721650257629558293828796031115397206059067934284452829611906818956352854418342467914729341523414945427019410284762464062112274326172407819051167058569790660930309496043254270888417520676082271432948852231332576271876251597199882908964994070268531832274431027';
|
||||
const got = new BigInteger(input);
|
||||
const expected = new BN(input);
|
||||
expect(got.toString()).to.equal(expected.toString());
|
||||
});
|
||||
|
||||
it('constructor supports Uint8Arrays', function() {
|
||||
const expected = new BN('417653931840771530406225971293556769925351769207235721650257629558293828796031115397206059067934284452829611906818956352854418342467914729341523414945427019410284762464062112274326172407819051167058569790660930309496043254270888417520676082271432948852231332576271876251597199882908964994070268531832274431027');
|
||||
const input = expected.toArrayLike(Uint8Array);
|
||||
const got = new BigInteger(input);
|
||||
expect(got.toString()).to.equal(expected.toString());
|
||||
});
|
||||
|
||||
it('conditional operators are correct', function() {
|
||||
const a = new BigInteger(12);
|
||||
const b = new BigInteger(34);
|
||||
|
||||
expect(a.equal(a)).to.be.true;
|
||||
expect(a.equal(b)).to.be.false;
|
||||
expect(a.gt(a) === a.lt(a)).to.be.true;
|
||||
expect(a.gt(b) === a.lt(b)).to.be.false;
|
||||
expect(a.gte(a) === a.lte(a)).to.be.true;
|
||||
|
||||
const zero = new BigInteger(0);
|
||||
const one = new BigInteger(1);
|
||||
expect(zero.isZero()).to.be.true;
|
||||
expect(one.isZero()).to.be.false;
|
||||
|
||||
expect(one.isOne()).to.be.true;
|
||||
expect(zero.isOne()).to.be.false;
|
||||
|
||||
expect(zero.isEven()).to.be.true;
|
||||
expect(one.isEven()).to.be.false;
|
||||
|
||||
expect(zero.isNegative()).to.be.false;
|
||||
expect(zero.dec().isNegative()).to.be.true;
|
||||
});
|
||||
|
||||
it('bitLength is correct', function() {
|
||||
const n = new BigInteger(127);
|
||||
let expected = 7;
|
||||
expect(n.bitLength() === expected).to.be.true;
|
||||
expect(n.inc().bitLength() === (++expected)).to.be.true;
|
||||
});
|
||||
|
||||
it('byteLength is correct', function() {
|
||||
const n = new BigInteger(65535);
|
||||
let expected = 2;
|
||||
expect(n.byteLength() === expected).to.be.true;
|
||||
expect(n.inc().byteLength() === (++expected)).to.be.true;
|
||||
});
|
||||
|
||||
it('toUint8Array is correct', function() {
|
||||
const nString = '417653931840771530406225971293556769925351769207235721650257629558293828796031115397206059067934284452829611906818956352854418342467914729341523414945427019410284762464062112274326172407819051167058569790660930309496043254270888417520676082271432948852231332576271876251597199882908964994070268531832274431027';
|
||||
const n = new BigInteger(nString);
|
||||
const paddedSize = Number(n.byteLength()) + 1;
|
||||
// big endian, unpadded
|
||||
let expected = new BN(nString).toArrayLike(Uint8Array);
|
||||
expect(n.toUint8Array()).to.deep.equal(expected);
|
||||
// big endian, padded
|
||||
expected = new BN(nString).toArrayLike(Uint8Array, 'be', paddedSize);
|
||||
expect(n.toUint8Array('be', paddedSize)).to.deep.equal(expected);
|
||||
// little endian, unpadded
|
||||
expected = new BN(nString).toArrayLike(Uint8Array, 'le');
|
||||
expect(n.toUint8Array('le')).to.deep.equal(expected);
|
||||
//little endian, padded
|
||||
expected = new BN(nString).toArrayLike(Uint8Array, 'le', paddedSize);
|
||||
expect(n.toUint8Array('le', paddedSize)).to.deep.equal(expected);
|
||||
});
|
||||
|
||||
it('binary operators are consistent', function() {
|
||||
const a = new BigInteger(12);
|
||||
const b = new BigInteger(34);
|
||||
const ops = ['add', 'sub', 'mul', 'mod', 'leftShift', 'rightShift'];
|
||||
ops.forEach(op => {
|
||||
const iop = `i${op}`;
|
||||
expect(a[op](b).equal(a[iop](b))).to.be.true;
|
||||
});
|
||||
});
|
||||
|
||||
it('unary operators are consistent', function() {
|
||||
const a = new BigInteger(12);
|
||||
const one = new BigInteger(1);
|
||||
expect(a.sub(one).equal(a.dec())).to.be.true;
|
||||
expect(a.add(one).equal(a.inc())).to.be.true;
|
||||
});
|
||||
|
||||
it('modExp is correct (large values)', function() {
|
||||
const stringX = '417653931840771530406225971293556769925351769207235721650257629558293828796031115397206059067934284452829611906818956352854418342467914729341523414945427019410284762464062112274326172407819051167058569790660930309496043254270888417520676082271432948852231332576271876251597199882908964994070268531832274431027';
|
||||
const stringE = '21139356010872569239159922781526379521587348169074209285187910481667533072168468011617194695181255483288792585413365359733692097084373249198758148704369207793873998901870577262254971784191473102265830193058813215898765238784670469696574407580179153118937858890572095234316482449291777882525949871374961971753';
|
||||
const stringN = '129189808515414783602892982235788912674846062846614219472827821758734760420002631653235573915244294540972376140705505703576175711417114803419704967903726436285518767606681184247119430411311152556442947708732584954518890222684529678365388350886907287414896703685680210648760841628375425909680236584021041565183';
|
||||
const x = new BigInteger(stringX);
|
||||
const e = new BigInteger(stringE);
|
||||
const n = new BigInteger(stringN);
|
||||
|
||||
const got = x.modExp(e, n);
|
||||
const expected = new BN(stringX).toRed(BN.red(new BN(stringN))).redPow(new BN(stringE));
|
||||
// different formats, it's easier to compare strings
|
||||
expect(got.toString() === expected.toString()).to.be.true;
|
||||
});
|
||||
|
||||
it('gcd is correct', async function() {
|
||||
const aBN = await getRandomBN(new BN(2), new BN(200));
|
||||
const bBN = await getRandomBN(new BN(2), new BN(200));
|
||||
if (aBN.isEven()) aBN.iaddn(1);
|
||||
const a = new BigInteger(aBN.toString());
|
||||
const b = new BigInteger(bBN.toString());
|
||||
const expected = aBN.gcd(bBN);
|
||||
expect(a.gcd(b).toString()).to.equal(expected.toString());
|
||||
});
|
||||
|
||||
it('modular inversion is correct', async function() {
|
||||
const moduloBN = new BN(229); // this is a prime
|
||||
const baseBN = await getRandomBN(new BN(2), moduloBN);
|
||||
const a = new BigInteger(baseBN.toString());
|
||||
const n = new BigInteger(moduloBN.toString());
|
||||
const expected = baseBN.invm(moduloBN);
|
||||
expect(a.modInv(n).toString()).to.equal(expected.toString());
|
||||
});
|
||||
|
||||
it('getBit is correct', async function() {
|
||||
const i = 5;
|
||||
const nBN = await getRandomBN(new BN(2), new BN(200));
|
||||
const n = new BigInteger(nBN.toString());
|
||||
const expected = nBN.testn(5) ? 1 : 0;
|
||||
expect(n.getBit(i) === expected).to.be.true;
|
||||
});
|
||||
|
||||
describe('MPI and BigInteger conversions', function() {
|
||||
it('MPI to/from BigInteger is correct', async function() {
|
||||
const input = '417653931840771530406225971293556769925351769207235721650257629558293828796031115397206059067934284452829611906818956352854418342467914729341523414945427019410284762464062112274326172407819051167058569790660930309496043254270888417520676082271432948852231332576271876251597199882908964994070268531832274431027';
|
||||
const n = new BigInteger(input);
|
||||
const mpi = new openpgp.MPI(n);
|
||||
|
||||
expect((await mpi.toBigInteger()).equal(n)).to.be.true;
|
||||
});
|
||||
});
|
||||
});
|
|
@ -1,5 +1,6 @@
|
|||
module.exports = () => describe('General', function () {
|
||||
require('./util.js')();
|
||||
require('./biginteger.js')();
|
||||
require('./armor.js')();
|
||||
require('./packet.js')();
|
||||
require('./keyring.js')();
|
||||
|
|
|
@ -2588,9 +2588,9 @@ module.exports = () => describe('Key', function() {
|
|||
let v5KeysVal;
|
||||
let aeadProtectVal;
|
||||
const rsaGenValue = {
|
||||
512: openpgp.crypto.publicKey.rsa.generate(512, "10001"),
|
||||
1024: openpgp.crypto.publicKey.rsa.generate(1024, "10001"),
|
||||
2048: openpgp.crypto.publicKey.rsa.generate(2048, "10001")
|
||||
512: openpgp.crypto.publicKey.rsa.generate(512, 65537),
|
||||
1024: openpgp.crypto.publicKey.rsa.generate(1024, 65537),
|
||||
2048: openpgp.crypto.publicKey.rsa.generate(2048, 65537)
|
||||
};
|
||||
|
||||
beforeEach(function() {
|
||||
|
|
|
@ -551,7 +551,7 @@ function withCompression(tests) {
|
|||
module.exports = () => describe('OpenPGP.js public api tests', function() {
|
||||
|
||||
let rsaGenStub;
|
||||
let rsaGenValue = openpgp.crypto.publicKey.rsa.generate(openpgp.util.getWebCryptoAll() ? 2048 : 512, "10001");
|
||||
let rsaGenValue = openpgp.crypto.publicKey.rsa.generate(openpgp.util.getWebCryptoAll() ? 2048 : 512, 65537);
|
||||
|
||||
beforeEach(function() {
|
||||
rsaGenStub = stub(openpgp.crypto.publicKey.rsa, 'generate');
|
||||
|
@ -2345,6 +2345,7 @@ module.exports = () => describe('OpenPGP.js public api tests', function() {
|
|||
});
|
||||
|
||||
it('RSA decryption with PKCS1 padding of wrong length should fail', async function() {
|
||||
const key = await openpgp.key.readArmored(rsaPrivateKeyPKCS1);
|
||||
const key = (await openpgp.key.readArmored(rsaPrivateKeyPKCS1)).keys[0];
|
||||
// the paddings of these messages are prefixed by 0x02 and 0x000002 instead of 0x0002
|
||||
// the code should discriminate between these cases by checking the length of the padded plaintext
|
||||
|
|
|
@ -318,7 +318,7 @@ module.exports = () => describe("Packet", function() {
|
|||
const rsa = openpgp.crypto.publicKey.rsa;
|
||||
const keySize = openpgp.util.getWebCryptoAll() ? 2048 : 512; // webkit webcrypto accepts minimum 2048 bit keys
|
||||
|
||||
return rsa.generate(keySize, "10001").then(function(mpiGen) {
|
||||
return rsa.generate(keySize, 65537).then(function(mpiGen) {
|
||||
|
||||
let mpi = [mpiGen.n, mpiGen.e, mpiGen.d, mpiGen.p, mpiGen.q, mpiGen.u];
|
||||
mpi = mpi.map(function(k) {
|
||||
|
@ -848,7 +848,7 @@ V+HOQJQxXJkVRYa3QrFUehiMzTeqqMdgC6ZqJy7+
|
|||
const rsa = openpgp.crypto.publicKey.rsa;
|
||||
const keySize = openpgp.util.getWebCryptoAll() ? 2048 : 512; // webkit webcrypto accepts minimum 2048 bit keys
|
||||
|
||||
return rsa.generate(keySize, "10001").then(async function(mpiGen) {
|
||||
return rsa.generate(keySize, 65537).then(async function(mpiGen) {
|
||||
let mpi = [mpiGen.n, mpiGen.e, mpiGen.d, mpiGen.p, mpiGen.q, mpiGen.u];
|
||||
mpi = mpi.map(function(k) {
|
||||
return new openpgp.MPI(k);
|
||||
|
@ -880,7 +880,7 @@ V+HOQJQxXJkVRYa3QrFUehiMzTeqqMdgC6ZqJy7+
|
|||
const keySize = openpgp.util.getWebCryptoAll() ? 2048 : 512; // webkit webcrypto accepts minimum 2048 bit keys
|
||||
|
||||
try {
|
||||
const mpiGen = await rsa.generate(keySize, "10001");
|
||||
const mpiGen = await rsa.generate(keySize, 65537);
|
||||
let mpi = [mpiGen.n, mpiGen.e, mpiGen.d, mpiGen.p, mpiGen.q, mpiGen.u];
|
||||
mpi = mpi.map(function(k) {
|
||||
return new openpgp.MPI(k);
|
||||
|
@ -909,7 +909,7 @@ V+HOQJQxXJkVRYa3QrFUehiMzTeqqMdgC6ZqJy7+
|
|||
const rsa = openpgp.crypto.publicKey.rsa;
|
||||
const keySize = openpgp.util.getWebCryptoAll() ? 2048 : 512; // webkit webcrypto accepts minimum 2048 bit keys
|
||||
|
||||
return rsa.generate(keySize, "10001").then(function(mpiGen) {
|
||||
return rsa.generate(keySize, 65537).then(function(mpiGen) {
|
||||
let mpi = [mpiGen.n, mpiGen.e, mpiGen.d, mpiGen.p, mpiGen.q, mpiGen.u];
|
||||
mpi = mpi.map(function(k) {
|
||||
return new openpgp.MPI(k);
|
||||
|
|
Loading…
Reference in New Issue
Block a user