Fix reading and writing unencrypted V5 secret key packets

This commit is contained in:
Daniel Huigens 2019-05-05 00:02:11 +02:00
parent dff1a8aed8
commit f629ddcb31

View File

@ -47,13 +47,33 @@ function SecretKey(date=new Date()) {
*/
this.tag = enums.packet.secretKey;
/**
* Encrypted secret-key data
* Secret-key data
*/
this.encrypted = null;
this.keyMaterial = null;
/**
* Indicator if secret-key data is encrypted. `this.isEncrypted === false` means data is available in decrypted form.
* Indicates whether secret-key data is encrypted. `this.isEncrypted === false` means data is available in decrypted form.
*/
this.isEncrypted = null;
/**
* S2K usage
* @type {Integer}
*/
this.s2k_usage = 0;
/**
* S2K object
* @type {type/s2k}
*/
this.s2k = null;
/**
* Symmetric algorithm
* @type {String}
*/
this.symmetric = 'aes256';
/**
* AEAD algorithm
* @type {String}
*/
this.aead = 'eax';
}
SecretKey.prototype = new publicKey();
@ -99,31 +119,78 @@ function write_cleartext_params(params, algorithm) {
*/
SecretKey.prototype.read = function (bytes) {
// - A Public-Key or Public-Subkey packet, as described above.
const len = this.readPublicKey(bytes);
bytes = bytes.subarray(len, bytes.length);
let i = this.readPublicKey(bytes);
// - One octet indicating string-to-key usage conventions. Zero
// indicates that the secret-key data is not encrypted. 255 or 254
// indicates that a string-to-key specifier is being given. Any
// other value is a symmetric-key encryption algorithm identifier.
const isEncrypted = bytes[0];
this.s2k_usage = bytes[i++];
if (isEncrypted) {
this.encrypted = bytes;
this.isEncrypted = true;
} else {
// - Plain or encrypted multiprecision integers comprising the secret
// key data. These algorithm-specific fields are as described
// below.
const cleartext = bytes.subarray(1, -2);
if (!util.equalsUint8Array(util.write_checksum(cleartext), bytes.subarray(-2))) {
// - Only for a version 5 packet, a one-octet scalar octet count of
// the next 4 optional fields.
if (this.version === 5) {
i++;
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// one-octet symmetric encryption algorithm.
if (this.s2k_usage === 255 || this.s2k_usage === 254 || this.s2k_usage === 253) {
this.symmetric = bytes[i++];
this.symmetric = enums.read(enums.symmetric, this.symmetric);
// - [Optional] If string-to-key usage octet was 253, a one-octet
// AEAD algorithm.
if (this.s2k_usage === 253) {
this.aead = bytes[i++];
this.aead = enums.read(enums.aead, this.aead);
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// string-to-key specifier. The length of the string-to-key
// specifier is implied by its type, as described above.
this.s2k = new type_s2k();
i += this.s2k.read(bytes.subarray(i, bytes.length));
if (this.s2k.type === 'gnu-dummy') {
return;
}
} else if (this.s2k_usage) {
this.symmetric = this.s2k_usage;
this.symmetric = enums.read(enums.symmetric, this.symmetric);
}
// - [Optional] If secret data is encrypted (string-to-key usage octet
// not zero), an Initial Vector (IV) of the same length as the
// cipher's block size.
if (this.s2k_usage) {
this.iv = bytes.subarray(
i,
i + crypto.cipher[this.symmetric].blockSize
);
i += this.iv.length;
}
// - Only for a version 5 packet, a four-octet scalar octet count for
// the following key material.
if (this.version === 5) {
i += 4;
}
// - Plain or encrypted multiprecision integers comprising the secret
// key data. These algorithm-specific fields are as described
// below.
this.keyMaterial = bytes.subarray(i);
this.isEncrypted = !!this.s2k_usage;
if (!this.isEncrypted) {
const cleartext = this.keyMaterial.subarray(0, -2);
if (!util.equalsUint8Array(util.write_checksum(cleartext), this.keyMaterial.subarray(-2))) {
throw new Error('Key checksum mismatch');
}
const privParams = parse_cleartext_params(cleartext, this.algorithm);
this.params = this.params.concat(privParams);
this.isEncrypted = false;
}
};
@ -134,13 +201,51 @@ SecretKey.prototype.read = function (bytes) {
SecretKey.prototype.write = function () {
const arr = [this.writePublicKey()];
if (!this.encrypted) {
arr.push(new Uint8Array([0]));
const cleartextParams = write_cleartext_params(this.params, this.algorithm);
arr.push(cleartextParams);
arr.push(util.write_checksum(cleartextParams));
} else {
arr.push(this.encrypted);
arr.push(new Uint8Array([this.s2k_usage]));
const optionalFieldsArr = [];
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// one- octet symmetric encryption algorithm.
if (this.s2k_usage === 255 || this.s2k_usage === 254 || this.s2k_usage === 253) {
optionalFieldsArr.push(enums.write(enums.symmetric, this.symmetric));
// - [Optional] If string-to-key usage octet was 253, a one-octet
// AEAD algorithm.
if (this.s2k_usage === 253) {
optionalFieldsArr.push(enums.write(enums.aead, this.aead));
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// string-to-key specifier. The length of the string-to-key
// specifier is implied by its type, as described above.
optionalFieldsArr.push(...this.s2k.write());
}
// - [Optional] If secret data is encrypted (string-to-key usage octet
// not zero), an Initial Vector (IV) of the same length as the
// cipher's block size.
if (this.s2k_usage) {
optionalFieldsArr.push(...this.iv);
}
if (this.version === 5) {
arr.push(new Uint8Array([optionalFieldsArr.length]));
}
arr.push(new Uint8Array(optionalFieldsArr));
if (!this.s2k || this.s2k.type !== 'gnu-dummy') {
if (!this.s2k_usage) {
const cleartextParams = write_cleartext_params(this.params, this.algorithm);
this.keyMaterial = util.concatUint8Array([
cleartextParams,
util.write_checksum(cleartextParams)
]);
}
if (this.version === 5) {
arr.push(util.writeNumber(this.keyMaterial.length, 4));
}
arr.push(this.keyMaterial);
}
return util.concatUint8Array(arr);
@ -164,48 +269,36 @@ SecretKey.prototype.isDecrypted = function() {
* @async
*/
SecretKey.prototype.encrypt = async function (passphrase) {
if (this.isDecrypted() && this.encrypted) { // gnu-dummy
if (this.s2k && this.s2k.type === 'gnu-dummy') {
return false;
}
if (this.isDecrypted() && !passphrase) {
this.encrypted = null;
this.s2k_usage = 0;
return false;
} else if (!passphrase) {
throw new Error('The key must be decrypted before removing passphrase protection.');
}
const s2k = new type_s2k();
s2k.salt = await crypto.random.getRandomBytes(8);
const symmetric = 'aes256';
this.s2k = new type_s2k();
this.s2k.salt = await crypto.random.getRandomBytes(8);
const cleartext = write_cleartext_params(this.params, this.algorithm);
const key = await produceEncryptionKey(s2k, passphrase, symmetric);
const blockLen = crypto.cipher[symmetric].blockSize;
const iv = await crypto.random.getRandomBytes(blockLen);
let arr;
const key = await produceEncryptionKey(this.s2k, passphrase, this.symmetric);
const blockLen = crypto.cipher[this.symmetric].blockSize;
this.iv = await crypto.random.getRandomBytes(blockLen);
if (this.version === 5) {
const aead = 'eax';
const optionalFields = util.concatUint8Array([new Uint8Array([enums.write(enums.symmetric, symmetric), enums.write(enums.aead, aead)]), s2k.write(), iv]);
arr = [new Uint8Array([253, optionalFields.length])];
arr.push(optionalFields);
const mode = crypto[aead];
const modeInstance = await mode(symmetric, key);
const encrypted = await modeInstance.encrypt(cleartext, iv.subarray(0, mode.ivLength), new Uint8Array());
arr.push(util.writeNumber(encrypted.length, 4));
arr.push(encrypted);
this.s2k_usage = 253;
const mode = crypto[this.aead];
const modeInstance = await mode(this.symmetric, key);
this.keyMaterial = await modeInstance.encrypt(cleartext, this.iv.subarray(0, mode.ivLength), new Uint8Array());
} else {
arr = [new Uint8Array([254, enums.write(enums.symmetric, symmetric)])];
arr.push(s2k.write());
arr.push(iv);
arr.push(crypto.cfb.encrypt(symmetric, key, util.concatUint8Array([
this.s2k_usage = 254;
this.keyMaterial = crypto.cfb.encrypt(this.symmetric, key, util.concatUint8Array([
cleartext,
await crypto.hash.sha1(cleartext)
]), iv));
]), this.iv);
}
this.encrypted = util.concatUint8Array(arr);
return true;
};
@ -225,87 +318,40 @@ async function produceEncryptionKey(s2k, passphrase, algorithm) {
* @async
*/
SecretKey.prototype.decrypt = async function (passphrase) {
if (this.s2k.type === 'gnu-dummy') {
this.isEncrypted = false;
return false;
}
if (this.isDecrypted()) {
throw new Error('Key packet is already decrypted.');
}
let i = 0;
let symmetric;
let aead;
let key;
const s2k_usage = this.encrypted[i++];
// - Only for a version 5 packet, a one-octet scalar octet count of
// the next 4 optional fields.
if (this.version === 5) {
i++;
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// one-octet symmetric encryption algorithm.
if (s2k_usage === 255 || s2k_usage === 254 || s2k_usage === 253) {
symmetric = this.encrypted[i++];
symmetric = enums.read(enums.symmetric, symmetric);
// - [Optional] If string-to-key usage octet was 253, a one-octet
// AEAD algorithm.
if (s2k_usage === 253) {
aead = this.encrypted[i++];
aead = enums.read(enums.aead, aead);
}
// - [Optional] If string-to-key usage octet was 255, 254, or 253, a
// string-to-key specifier. The length of the string-to-key
// specifier is implied by its type, as described above.
const s2k = new type_s2k();
i += s2k.read(this.encrypted.subarray(i, this.encrypted.length));
if (s2k.type === 'gnu-dummy') {
this.isEncrypted = false;
return false;
}
key = await produceEncryptionKey(s2k, passphrase, symmetric);
if (this.s2k_usage === 255 || this.s2k_usage === 254 || this.s2k_usage === 253) {
key = await produceEncryptionKey(this.s2k, passphrase, this.symmetric);
} else {
symmetric = s2k_usage;
symmetric = enums.read(enums.symmetric, symmetric);
key = await crypto.hash.md5(passphrase);
}
// - [Optional] If secret data is encrypted (string-to-key usage octet
// not zero), an Initial Vector (IV) of the same length as the
// cipher's block size.
const iv = this.encrypted.subarray(
i,
i + crypto.cipher[symmetric].blockSize
);
i += iv.length;
// - Only for a version 5 packet, a four-octet scalar octet count for
// the following key material.
if (this.version === 5) {
i += 4;
}
const ciphertext = this.encrypted.subarray(i, this.encrypted.length);
let cleartext;
if (aead) {
const mode = crypto[aead];
if (this.s2k_usage === 253) {
const mode = crypto[this.aead];
try {
const modeInstance = await mode(symmetric, key);
cleartext = await modeInstance.decrypt(ciphertext, iv.subarray(0, mode.ivLength), new Uint8Array());
const modeInstance = await mode(this.symmetric, key);
cleartext = await modeInstance.decrypt(this.keyMaterial, this.iv.subarray(0, mode.ivLength), new Uint8Array());
} catch(err) {
if (err.message === 'Authentication tag mismatch') {
throw new Error('Incorrect key passphrase: ' + err.message);
}
throw err;
}
} else {
const cleartextWithHash = await crypto.cfb.decrypt(symmetric, key, ciphertext, iv);
const cleartextWithHash = await crypto.cfb.decrypt(this.symmetric, key, this.keyMaterial, this.iv);
let hash;
let hashlen;
if (s2k_usage === 255) {
if (this.s2k_usage === 255) {
hashlen = 2;
cleartext = cleartextWithHash.subarray(0, -hashlen);
hash = util.write_checksum(cleartext);
@ -323,7 +369,8 @@ SecretKey.prototype.decrypt = async function (passphrase) {
const privParams = parse_cleartext_params(cleartext, this.algorithm);
this.params = this.params.concat(privParams);
this.isEncrypted = false;
this.encrypted = null;
this.keyMaterial = null;
this.s2k_usage = 0;
return true;
};
@ -338,7 +385,7 @@ SecretKey.prototype.generate = async function (bits, curve) {
* Clear private params, return to initial state
*/
SecretKey.prototype.clearPrivateParams = function () {
if (!this.encrypted) {
if (!this.keyMaterial) {
throw new Error('If secret key is not encrypted, clearing private params is irreversible.');
}
const algo = enums.write(enums.publicKey, this.algorithm);