Source: crypto/cfb.js

// Modified by Recurity Labs GmbH 

// modified version of http://www.hanewin.net/encrypt/PGdecode.js:

/* OpenPGP encryption using RSA/AES
 * Copyright 2005-2006 Herbert Hanewinkel, www.haneWIN.de
 * version 2.0, check www.haneWIN.de for the latest version

 * This software is provided as-is, without express or implied warranty.  
 * Permission to use, copy, modify, distribute or sell this software, with or
 * without fee, for any purpose and by any individual or organization, is hereby
 * granted, provided that the above copyright notice and this paragraph appear 
 * in all copies. Distribution as a part of an application or binary must
 * include the above copyright notice in the documentation and/or other
 * materials provided with the application or distribution.
 */

/**
 * @requires crypto/cipher
 * @requires util
 * @module crypto/cfb
 */

var util = require('../util'),
  cipher = require('./cipher');

module.exports = {

  /**
   * This function encrypts a given with the specified prefixrandom 
   * using the specified blockcipher to encrypt a message
   * @param {String} prefixrandom random bytes of block_size length provided 
   *  as a string to be used in prefixing the data
   * @param {String} cipherfn the algorithm cipher class to encrypt
   *  data in one block_size encryption, @see module:crypto/cipher.
   * @param {String} plaintext data to be encrypted provided as a string
   * @param {String} key binary string representation of key to be used to encrypt the plaintext.
   * This will be passed to the cipherfn
   * @param {Boolean} resync a boolean value specifying if a resync of the
   *  IV should be used or not. The encrypteddatapacket uses the 
   *  "old" style with a resync. Encryption within an 
   *  encryptedintegrityprotecteddata packet is not resyncing the IV.
   * @return {String} a string with the encrypted data
   */
  encrypt: function(prefixrandom, cipherfn, plaintext, key, resync) {
    cipherfn = new cipher[cipherfn](key);
    var block_size = cipherfn.blockSize;

    var FR = new Array(block_size);
    var FRE = new Array(block_size);

    prefixrandom = prefixrandom + prefixrandom.charAt(block_size - 2) + prefixrandom.charAt(block_size - 1);
    util.print_debug("prefixrandom:" + util.hexstrdump(prefixrandom));
    var ciphertext = "";
    var i;
    // 1.  The feedback register (FR) is set to the IV, which is all zeros.
    for (i = 0; i < block_size; i++) FR[i] = 0;

    // 2.  FR is encrypted to produce FRE (FR Encrypted).  This is the
    //     encryption of an all-zero value.
    FRE = cipherfn.encrypt(FR);
    // 3.  FRE is xored with the first BS octets of random data prefixed to
    //     the plaintext to produce C[1] through C[BS], the first BS octets
    //     of ciphertext.
    for (i = 0; i < block_size; i++) ciphertext += String.fromCharCode(FRE[i] ^ prefixrandom.charCodeAt(i));

    // 4.  FR is loaded with C[1] through C[BS].
    for (i = 0; i < block_size; i++) FR[i] = ciphertext.charCodeAt(i);

    // 5.  FR is encrypted to produce FRE, the encryption of the first BS
    //     octets of ciphertext.
    FRE = cipherfn.encrypt(FR);

    // 6.  The left two octets of FRE get xored with the next two octets of
    //     data that were prefixed to the plaintext.  This produces C[BS+1]
    //     and C[BS+2], the next two octets of ciphertext.
    ciphertext += String.fromCharCode(FRE[0] ^ prefixrandom.charCodeAt(block_size));
    ciphertext += String.fromCharCode(FRE[1] ^ prefixrandom.charCodeAt(block_size + 1));

    if (resync) {
      // 7.  (The resync step) FR is loaded with C3-C10.
      for (i = 0; i < block_size; i++) FR[i] = ciphertext.charCodeAt(i + 2);
    } else {
      for (i = 0; i < block_size; i++) FR[i] = ciphertext.charCodeAt(i);
    }
    // 8.  FR is encrypted to produce FRE.
    FRE = cipherfn.encrypt(FR, key);

    if (resync) {
      // 9.  FRE is xored with the first 8 octets of the given plaintext, now
      //     that we have finished encrypting the 10 octets of prefixed data.
      //     This produces C11-C18, the next 8 octets of ciphertext.
      for (i = 0; i < block_size; i++)
        ciphertext += String.fromCharCode(FRE[i] ^ plaintext.charCodeAt(i));
      for (n = block_size + 2; n < plaintext.length; n += block_size) {
        // 10. FR is loaded with C11-C18
        for (i = 0; i < block_size; i++) FR[i] = ciphertext.charCodeAt(n + i);

        // 11. FR is encrypted to produce FRE.
        FRE = cipherfn.encrypt(FR);

        // 12. FRE is xored with the next 8 octets of plaintext, to produce the
        // next 8 octets of ciphertext.  These are loaded into FR and the
        // process is repeated until the plaintext is used up.
        for (i = 0; i < block_size; i++) ciphertext += String.fromCharCode(FRE[i] ^ plaintext.charCodeAt((n - 2) +
            i));
      }
    } else {
      plaintext = "  " + plaintext;
      // 9.  FRE is xored with the first 8 octets of the given plaintext, now
      //     that we have finished encrypting the 10 octets of prefixed data.
      //     This produces C11-C18, the next 8 octets of ciphertext.
      for (i = 2; i < block_size; i++) ciphertext += String.fromCharCode(FRE[i] ^ plaintext.charCodeAt(i));
      var tempCiphertext = ciphertext.substring(0, 2 * block_size).split('');
      var tempCiphertextString = ciphertext.substring(block_size);
      for (n = block_size; n < plaintext.length; n += block_size) {
        // 10. FR is loaded with C11-C18
        for (i = 0; i < block_size; i++) FR[i] = tempCiphertextString.charCodeAt(i);
        tempCiphertextString = '';

        // 11. FR is encrypted to produce FRE.
        FRE = cipherfn.encrypt(FR);

        // 12. FRE is xored with the next 8 octets of plaintext, to produce the
        //     next 8 octets of ciphertext.  These are loaded into FR and the
        //     process is repeated until the plaintext is used up.
        for (i = 0; i < block_size; i++) {
          tempCiphertext.push(String.fromCharCode(FRE[i] ^ plaintext.charCodeAt(n + i)));
          tempCiphertextString += String.fromCharCode(FRE[i] ^ plaintext.charCodeAt(n + i));
        }
      }
      ciphertext = tempCiphertext.join('');
    }

    ciphertext = ciphertext.substring(0, plaintext.length + 2 + block_size);

    return ciphertext;
  },

  /**
   * Decrypts the prefixed data for the Modification Detection Code (MDC) computation
   * @param {String} cipherfn.encrypt Cipher function to use,
   *  @see module:crypto/cipher.
   * @param {String} key binary string representation of key to be used to check the mdc
   * This will be passed to the cipherfn
   * @param {String} ciphertext The encrypted data
   * @return {String} plaintext Data of D(ciphertext) with blocksize length +2
   */
  mdc: function(cipherfn, key, ciphertext) {
    cipherfn = new cipher[cipherfn](key);
    var block_size = cipherfn.blockSize;

    var iblock = new Array(block_size);
    var ablock = new Array(block_size);
    var i;


    // initialisation vector
    for (i = 0; i < block_size; i++) iblock[i] = 0;

    iblock = cipherfn.encrypt(iblock);
    for (i = 0; i < block_size; i++) {
      ablock[i] = ciphertext.charCodeAt(i);
      iblock[i] ^= ablock[i];
    }

    ablock = cipherfn.encrypt(ablock);

    return util.bin2str(iblock) +
      String.fromCharCode(ablock[0] ^ ciphertext.charCodeAt(block_size)) +
      String.fromCharCode(ablock[1] ^ ciphertext.charCodeAt(block_size + 1));
  },
  /**
   * This function decrypts a given plaintext using the specified
   * blockcipher to decrypt a message
   * @param {String} cipherfn the algorithm cipher class to decrypt
   *  data in one block_size encryption, @see module:crypto/cipher.
   * @param {String} key binary string representation of key to be used to decrypt the ciphertext.
   * This will be passed to the cipherfn
   * @param {String} ciphertext to be decrypted provided as a string
   * @param {Boolean} resync a boolean value specifying if a resync of the
   *  IV should be used or not. The encrypteddatapacket uses the 
   *  "old" style with a resync. Decryption within an 
   *  encryptedintegrityprotecteddata packet is not resyncing the IV.
   * @return {String} a string with the plaintext data
   */

  decrypt: function(cipherfn, key, ciphertext, resync) {
    cipherfn = new cipher[cipherfn](key);
    var block_size = cipherfn.blockSize;

    var iblock = new Array(block_size);
    var ablock = new Array(block_size);
    var i, n = '';
    var text = [];

    // initialisation vector
    for (i = 0; i < block_size; i++) iblock[i] = 0;

    iblock = cipherfn.encrypt(iblock, key);
    for (i = 0; i < block_size; i++) {
      ablock[i] = ciphertext.charCodeAt(i);
      iblock[i] ^= ablock[i];
    }

    ablock = cipherfn.encrypt(ablock, key);

    // test check octets
    if (iblock[block_size - 2] != (ablock[0] ^ ciphertext.charCodeAt(block_size)) || iblock[block_size - 1] != (ablock[
      1] ^ ciphertext.charCodeAt(block_size + 1))) {
      throw new Error('Invalid data.');
    }

    /*  RFC4880: Tag 18 and Resync:
		 *  [...] Unlike the Symmetrically Encrypted Data Packet, no
		 *  special CFB resynchronization is done after encrypting this prefix
		 *  data.  See "OpenPGP CFB Mode" below for more details.

		 */

    if (resync) {
      for (i = 0; i < block_size; i++) iblock[i] = ciphertext.charCodeAt(i + 2);
      for (n = block_size + 2; n < ciphertext.length; n += block_size) {
        ablock = cipherfn.encrypt(iblock);

        for (i = 0; i < block_size && i + n < ciphertext.length; i++) {
          iblock[i] = ciphertext.charCodeAt(n + i);
          text.push(String.fromCharCode(ablock[i] ^ iblock[i]));
        }
      }
    } else {
      for (i = 0; i < block_size; i++) iblock[i] = ciphertext.charCodeAt(i);
      for (n = block_size; n < ciphertext.length; n += block_size) {
        ablock = cipherfn.encrypt(iblock);
        for (i = 0; i < block_size && i + n < ciphertext.length; i++) {
          iblock[i] = ciphertext.charCodeAt(n + i);
          text.push(String.fromCharCode(ablock[i] ^ iblock[i]));
        }
      }
    }

    n = resync ? 0 : 2;

    text = text.join('');

    text = text.substring(n, ciphertext.length - block_size - 2 + n);


    return text;
  },


  normalEncrypt: function(cipherfn, key, plaintext, iv) {
    cipherfn = new cipher[cipherfn](key);
    var block_size = cipherfn.blockSize;

    var blocki = "";
    var blockc = "";
    var pos = 0;
    var cyphertext = [];
    var tempBlock = [];
    blockc = iv.substring(0, block_size);
    while (plaintext.length > block_size * pos) {
      var encblock = cipherfn.encrypt(util.str2bin(blockc));
      blocki = plaintext.substring((pos * block_size), (pos * block_size) + block_size);
      for (var i = 0; i < blocki.length; i++)
        tempBlock.push(String.fromCharCode(blocki.charCodeAt(i) ^ encblock[i]));
      blockc = tempBlock.join('');
      tempBlock = [];
      cyphertext.push(blockc);
      pos++;
    }
    return cyphertext.join('');
  },

  normalDecrypt: function(cipherfn, key, ciphertext, iv) {
    cipherfn = new cipher[cipherfn](key);
    var block_size = cipherfn.blockSize;

    var blockp = "";
    var pos = 0;
    var plaintext = [];
    var offset = 0;
    var i;
    if (iv === null)
      for (i = 0; i < block_size; i++) blockp += String.fromCharCode(0);
    else
      blockp = iv.substring(0, block_size);
    while (ciphertext.length > (block_size * pos)) {
      var decblock = cipherfn.encrypt(util.str2bin(blockp));
      blockp = ciphertext.substring((pos * (block_size)) + offset, (pos * (block_size)) + (block_size) + offset);
      for (i = 0; i < blockp.length; i++) {
        plaintext.push(String.fromCharCode(blockp.charCodeAt(i) ^ decblock[i]));
      }
      pos++;
    }

    return plaintext.join('');
  }
};