Source: packet/secret_key.js

// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
// 
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

/**
 * Implementation of the Key Material Packet (Tag 5,6,7,14)<br/>
 * <br/>
 * RFC4480 5.5:
 * A key material packet contains all the information about a public or
 * private key.  There are four variants of this packet type, and two
 * major versions.  Consequently, this section is complex.
 * @requires crypto
 * @requires enums
 * @requires packet/public_key
 * @requires type/mpi
 * @requires type/s2k
 * @requires util
 * @module packet/secret_key
 */

var publicKey = require('./public_key.js'),
  enums = require('../enums.js'),
  util = require('../util'),
  crypto = require('../crypto'),
  type_mpi = require('../type/mpi.js'),
  type_s2k = require('../type/s2k.js');

/**
 * @constructor
 * @extends module:packet/public_key
 */
module.exports = function secret_key() {
  publicKey.call(this);
  // encrypted secret-key data
  this.encrypted = null;
  // indicator if secret-key data is available in decrypted form
  this.isDecrypted = false;


  function get_hash_len(hash) {
    if (hash == 'sha1')
      return 20;
    else
      return 2;
  }

  function get_hash_fn(hash) {
    if (hash == 'sha1')
      return crypto.hash.sha1;
    else
      return function(c) {
        return util.writeNumber(util.calc_checksum(c), 2);
    };
  }

  // Helper function

  function parse_cleartext_mpi(hash_algorithm, cleartext, algorithm) {
    var hashlen = get_hash_len(hash_algorithm),
      hashfn = get_hash_fn(hash_algorithm);

    var hashtext = cleartext.substr(cleartext.length - hashlen);
    cleartext = cleartext.substr(0, cleartext.length - hashlen);

    var hash = hashfn(cleartext);

    if (hash != hashtext)
      return new Error("Hash mismatch.");

    var mpis = crypto.getPrivateMpiCount(algorithm);

    var j = 0;
    var mpi = [];

    for (var i = 0; i < mpis && j < cleartext.length; i++) {
      mpi[i] = new type_mpi();
      j += mpi[i].read(cleartext.substr(j));
    }

    return mpi;
  }

  function write_cleartext_mpi(hash_algorithm, algorithm, mpi) {
    var bytes = '';
    var discard = crypto.getPublicMpiCount(algorithm);

    for (var i = discard; i < mpi.length; i++) {
      bytes += mpi[i].write();
    }


    bytes += get_hash_fn(hash_algorithm)(bytes);

    return bytes;
  }


  // 5.5.3.  Secret-Key Packet Formats

  /**
   * Internal parser for private keys as specified in RFC 4880 section 5.5.3
   * @param {String} bytes Input string to read the packet from
   */
  this.read = function (bytes) {
    // - A Public-Key or Public-Subkey packet, as described above.
    var len = this.readPublicKey(bytes);

    bytes = bytes.substr(len);


    // - One octet indicating string-to-key usage conventions.  Zero
    //   indicates that the secret-key data is not encrypted.  255 or 254
    //   indicates that a string-to-key specifier is being given.  Any
    //   other value is a symmetric-key encryption algorithm identifier.
    var isEncrypted = bytes.charCodeAt(0);

    if (isEncrypted) {
      this.encrypted = bytes;
    } else {

      // - Plain or encrypted multiprecision integers comprising the secret
      //   key data.  These algorithm-specific fields are as described
      //   below.
      var parsedMPI = parse_cleartext_mpi('mod', bytes.substr(1), this.algorithm);
      if (parsedMPI instanceof Error)
        throw parsedMPI;
      this.mpi = this.mpi.concat(parsedMPI);
      this.isDecrypted = true;
    }

  };

  /** Creates an OpenPGP key packet for the given key.
    * @return {String} A string of bytes containing the secret key OpenPGP packet
    */
  this.write = function () {
    var bytes = this.writePublicKey();

    if (!this.encrypted) {
      bytes += String.fromCharCode(0);

      bytes += write_cleartext_mpi('mod', this.algorithm, this.mpi);
    } else {
      bytes += this.encrypted;
    }

    return bytes;
  };




  /** Encrypt the payload. By default, we use aes256 and iterated, salted string
   * to key specifier
   * @param {String} passphrase
   */
  this.encrypt = function (passphrase) {

    var s2k = new type_s2k(),
      symmetric = 'aes256',
      cleartext = write_cleartext_mpi('sha1', this.algorithm, this.mpi),
      key = produceEncryptionKey(s2k, passphrase, symmetric),
      blockLen = crypto.cipher[symmetric].blockSize,
      iv = crypto.random.getRandomBytes(blockLen);


    this.encrypted = '';
    this.encrypted += String.fromCharCode(254);
    this.encrypted += String.fromCharCode(enums.write(enums.symmetric, symmetric));
    this.encrypted += s2k.write();
    this.encrypted += iv;

    this.encrypted += crypto.cfb.normalEncrypt(symmetric, key, cleartext, iv);
  };

  function produceEncryptionKey(s2k, passphrase, algorithm) {
    return s2k.produce_key(passphrase,
      crypto.cipher[algorithm].keySize);
  }

  /**
   * Decrypts the private key MPIs which are needed to use the key.
   * @link module:packet/secret_key.isDecrypted should be
   * false otherwise a call to this function is not needed
   * 
   * @param {String} str_passphrase The passphrase for this private key 
   * as string
   * @return {Boolean} True if the passphrase was correct or MPI already
   *                   decrypted; false if not
   */
  this.decrypt = function (passphrase) {
    if (this.isDecrypted)
      return true;

    var i = 0,
      symmetric,
      key;

    var s2k_usage = this.encrypted.charCodeAt(i++);

    // - [Optional] If string-to-key usage octet was 255 or 254, a one-
    //   octet symmetric encryption algorithm.
    if (s2k_usage == 255 || s2k_usage == 254) {
      symmetric = this.encrypted.charCodeAt(i++);
      symmetric = enums.read(enums.symmetric, symmetric);

      // - [Optional] If string-to-key usage octet was 255 or 254, a
      //   string-to-key specifier.  The length of the string-to-key
      //   specifier is implied by its type, as described above.
      var s2k = new type_s2k();
      i += s2k.read(this.encrypted.substr(i));

      key = produceEncryptionKey(s2k, passphrase, symmetric);
    } else {
      symmetric = s2k_usage;
      symmetric = enums.read(enums.symmetric, symmetric);
      key = crypto.hash.md5(passphrase);
    }


    // - [Optional] If secret data is encrypted (string-to-key usage octet
    //   not zero), an Initial Vector (IV) of the same length as the
    //   cipher's block size.
    var iv = this.encrypted.substr(i,
      crypto.cipher[symmetric].blockSize);

    i += iv.length;

    var cleartext,
      ciphertext = this.encrypted.substr(i);

    cleartext = crypto.cfb.normalDecrypt(symmetric, key, ciphertext, iv);

    var hash = s2k_usage == 254 ?
      'sha1' :
      'mod';

    var parsedMPI = parse_cleartext_mpi(hash, cleartext, this.algorithm);
    if (parsedMPI instanceof Error)
      return false;
    this.mpi = this.mpi.concat(parsedMPI);
    this.isDecrypted = true;
    return true;
  };

  this.generate = function (bits) {
    this.mpi = crypto.generateMpi(this.algorithm, bits);
    this.isDecrypted = true;
  };

}

module.exports.prototype = new publicKey();