Source: packet/secret_key.js

// GPG4Browsers - An OpenPGP implementation in javascript
// Copyright (C) 2011 Recurity Labs GmbH
// 
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// 
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA

/**
 * Implementation of the Key Material Packet (Tag 5,6,7,14)<br/>
 * <br/>
 * {@link http://tools.ietf.org/html/rfc4880#section-5.5|RFC4480 5.5}:
 * A key material packet contains all the information about a public or
 * private key.  There are four variants of this packet type, and two
 * major versions.  Consequently, this section is complex.
 * @requires crypto
 * @requires enums
 * @requires packet/public_key
 * @requires type/mpi
 * @requires type/s2k
 * @requires util
 * @module packet/secret_key
 */

module.exports = SecretKey;

var publicKey = require('./public_key.js'),
  enums = require('../enums.js'),
  util = require('../util.js'),
  crypto = require('../crypto'),
  type_mpi = require('../type/mpi.js'),
  type_s2k = require('../type/s2k.js');

/**
 * @constructor
 * @extends module:packet/public_key
 */
function SecretKey() {
  publicKey.call(this);
  // encrypted secret-key data
  this.encrypted = null;
  // indicator if secret-key data is available in decrypted form
  this.isDecrypted = false;
}

SecretKey.prototype = new publicKey();
SecretKey.prototype.constructor = SecretKey;

function get_hash_len(hash) {
  if (hash == 'sha1')
    return 20;
  else
    return 2;
}

function get_hash_fn(hash) {
  if (hash == 'sha1')
    return crypto.hash.sha1;
  else
    return function(c) {
      return util.writeNumber(util.calc_checksum(c), 2);
  };
}

// Helper function

function parse_cleartext_mpi(hash_algorithm, cleartext, algorithm) {
  var hashlen = get_hash_len(hash_algorithm),
    hashfn = get_hash_fn(hash_algorithm);

  var hashtext = cleartext.substr(cleartext.length - hashlen);
  cleartext = cleartext.substr(0, cleartext.length - hashlen);

  var hash = hashfn(cleartext);

  if (hash != hashtext)
    return new Error("Hash mismatch.");

  var mpis = crypto.getPrivateMpiCount(algorithm);

  var j = 0;
  var mpi = [];

  for (var i = 0; i < mpis && j < cleartext.length; i++) {
    mpi[i] = new type_mpi();
    j += mpi[i].read(cleartext.substr(j));
  }

  return mpi;
}

function write_cleartext_mpi(hash_algorithm, algorithm, mpi) {
  var bytes = '';
  var discard = crypto.getPublicMpiCount(algorithm);

  for (var i = discard; i < mpi.length; i++) {
    bytes += mpi[i].write();
  }


  bytes += get_hash_fn(hash_algorithm)(bytes);

  return bytes;
}


// 5.5.3.  Secret-Key Packet Formats

/**
 * Internal parser for private keys as specified in {@link http://tools.ietf.org/html/rfc4880#section-5.5.3|RFC 4880 section 5.5.3}
 * @param {String} bytes Input string to read the packet from
 */
SecretKey.prototype.read = function (bytes) {
  // - A Public-Key or Public-Subkey packet, as described above.
  var len = this.readPublicKey(bytes);

  bytes = bytes.substr(len);


  // - One octet indicating string-to-key usage conventions.  Zero
  //   indicates that the secret-key data is not encrypted.  255 or 254
  //   indicates that a string-to-key specifier is being given.  Any
  //   other value is a symmetric-key encryption algorithm identifier.
  var isEncrypted = bytes.charCodeAt(0);

  if (isEncrypted) {
    this.encrypted = bytes;
  } else {

    // - Plain or encrypted multiprecision integers comprising the secret
    //   key data.  These algorithm-specific fields are as described
    //   below.
    var parsedMPI = parse_cleartext_mpi('mod', bytes.substr(1), this.algorithm);
    if (parsedMPI instanceof Error)
      throw parsedMPI;
    this.mpi = this.mpi.concat(parsedMPI);
    this.isDecrypted = true;
  }

};

/** Creates an OpenPGP key packet for the given key.
  * @return {String} A string of bytes containing the secret key OpenPGP packet
  */
SecretKey.prototype.write = function () {
  var bytes = this.writePublicKey();

  if (!this.encrypted) {
    bytes += String.fromCharCode(0);

    bytes += write_cleartext_mpi('mod', this.algorithm, this.mpi);
  } else {
    bytes += this.encrypted;
  }

  return bytes;
};




/** Encrypt the payload. By default, we use aes256 and iterated, salted string
 * to key specifier
 * @param {String} passphrase
 */
SecretKey.prototype.encrypt = function (passphrase) {

  var s2k = new type_s2k(),
    symmetric = 'aes256',
    cleartext = write_cleartext_mpi('sha1', this.algorithm, this.mpi),
    key = produceEncryptionKey(s2k, passphrase, symmetric),
    blockLen = crypto.cipher[symmetric].blockSize,
    iv = crypto.random.getRandomBytes(blockLen);


  this.encrypted = '';
  this.encrypted += String.fromCharCode(254);
  this.encrypted += String.fromCharCode(enums.write(enums.symmetric, symmetric));
  this.encrypted += s2k.write();
  this.encrypted += iv;

  this.encrypted += crypto.cfb.normalEncrypt(symmetric, key, cleartext, iv);
};

function produceEncryptionKey(s2k, passphrase, algorithm) {
  return s2k.produce_key(passphrase,
    crypto.cipher[algorithm].keySize);
}

/**
 * Decrypts the private key MPIs which are needed to use the key.
 * @link module:packet/secret_key.isDecrypted should be
 * false otherwise a call to this function is not needed
 *
 * @param {String} str_passphrase The passphrase for this private key
 * as string
 * @return {Boolean} True if the passphrase was correct or MPI already
 *                   decrypted; false if not
 */
SecretKey.prototype.decrypt = function (passphrase) {
  if (this.isDecrypted)
    return true;

  var i = 0,
    symmetric,
    key;

  var s2k_usage = this.encrypted.charCodeAt(i++);

  // - [Optional] If string-to-key usage octet was 255 or 254, a one-
  //   octet symmetric encryption algorithm.
  if (s2k_usage == 255 || s2k_usage == 254) {
    symmetric = this.encrypted.charCodeAt(i++);
    symmetric = enums.read(enums.symmetric, symmetric);

    // - [Optional] If string-to-key usage octet was 255 or 254, a
    //   string-to-key specifier.  The length of the string-to-key
    //   specifier is implied by its type, as described above.
    var s2k = new type_s2k();
    i += s2k.read(this.encrypted.substr(i));

    key = produceEncryptionKey(s2k, passphrase, symmetric);
  } else {
    symmetric = s2k_usage;
    symmetric = enums.read(enums.symmetric, symmetric);
    key = crypto.hash.md5(passphrase);
  }


  // - [Optional] If secret data is encrypted (string-to-key usage octet
  //   not zero), an Initial Vector (IV) of the same length as the
  //   cipher's block size.
  var iv = this.encrypted.substr(i,
    crypto.cipher[symmetric].blockSize);

  i += iv.length;

  var cleartext,
    ciphertext = this.encrypted.substr(i);

  cleartext = crypto.cfb.normalDecrypt(symmetric, key, ciphertext, iv);

  var hash = s2k_usage == 254 ?
    'sha1' :
    'mod';

  var parsedMPI = parse_cleartext_mpi(hash, cleartext, this.algorithm);
  if (parsedMPI instanceof Error)
    return false;
  this.mpi = this.mpi.concat(parsedMPI);
  this.isDecrypted = true;
  return true;
};

SecretKey.prototype.generate = function (bits) {
  this.mpi = crypto.generateMpi(this.algorithm, bits);
  this.isDecrypted = true;
};