/* eslint-disable new-cap */ /** * @fileoverview * BigInteger implementation of basic operations * that wraps the native BigInt library. * Operations are not constant time, * but we try and limit timing leakage where we can * @module biginteger/native * @private */ /** * @private */ export default class BigInteger { /** * Get a BigInteger (input must be big endian for strings and arrays) * @param {Number|String|Uint8Array} n - Value to convert * @throws {Error} on null or undefined input */ constructor(n) { if (n === undefined) { throw new Error('Invalid BigInteger input'); } if (n instanceof Uint8Array) { const bytes = n; const hex = new Array(bytes.length); for (let i = 0; i < bytes.length; i++) { const hexByte = bytes[i].toString(16); hex[i] = (bytes[i] <= 0xF) ? ('0' + hexByte) : hexByte; } this.value = BigInt('0x0' + hex.join('')); } else { this.value = BigInt(n); } } clone() { return new BigInteger(this.value); } /** * BigInteger increment in place */ iinc() { this.value++; return this; } /** * BigInteger increment * @returns {BigInteger} this + 1. */ inc() { return this.clone().iinc(); } /** * BigInteger decrement in place */ idec() { this.value--; return this; } /** * BigInteger decrement * @returns {BigInteger} this - 1. */ dec() { return this.clone().idec(); } /** * BigInteger addition in place * @param {BigInteger} x - Value to add */ iadd(x) { this.value += x.value; return this; } /** * BigInteger addition * @param {BigInteger} x - Value to add * @returns {BigInteger} this + x. */ add(x) { return this.clone().iadd(x); } /** * BigInteger subtraction in place * @param {BigInteger} x - Value to subtract */ isub(x) { this.value -= x.value; return this; } /** * BigInteger subtraction * @param {BigInteger} x - Value to subtract * @returns {BigInteger} this - x. */ sub(x) { return this.clone().isub(x); } /** * BigInteger multiplication in place * @param {BigInteger} x - Value to multiply */ imul(x) { this.value *= x.value; return this; } /** * BigInteger multiplication * @param {BigInteger} x - Value to multiply * @returns {BigInteger} this * x. */ mul(x) { return this.clone().imul(x); } /** * Compute value modulo m, in place * @param {BigInteger} m - Modulo */ imod(m) { this.value %= m.value; if (this.isNegative()) { this.iadd(m); } return this; } /** * Compute value modulo m * @param {BigInteger} m - Modulo * @returns {BigInteger} this mod m. */ mod(m) { return this.clone().imod(m); } /** * Compute modular exponentiation using square and multiply * @param {BigInteger} e - Exponent * @param {BigInteger} n - Modulo * @returns {BigInteger} this ** e mod n. */ modExp(e, n) { if (n.isZero()) throw Error("Modulo cannot be zero"); if (n.isOne()) return new BigInteger(0); if (e.isNegative()) throw Error("Unsopported negative exponent"); let exp = e.value; let x = this.value; x %= n.value; let r = BigInt(1); while (exp > BigInt(0)) { const lsb = exp & BigInt(1); exp >>= BigInt(1); // e / 2 // Always compute multiplication step, to reduce timing leakage const rx = (r * x) % n.value; // Update r only if lsb is 1 (odd exponent) r = lsb ? rx : r; x = (x * x) % n.value; // Square } return new BigInteger(r); } /** * Compute the inverse of this value modulo n * Note: this and and n must be relatively prime * @param {BigInteger} n - Modulo * @returns {BigInteger} x such that this*x = 1 mod n * @throws {Error} if the inverse does not exist */ modInv(n) { const { gcd, x } = this._egcd(n); if (!gcd.isOne()) { throw new Error('Inverse does not exist'); } return x.add(n).mod(n); } /** * Extended Eucleadian algorithm (http://anh.cs.luc.edu/331/notes/xgcd.pdf) * Given a = this and b, compute (x, y) such that ax + by = gdc(a, b) * @param {BigInteger} b - Second operand * @returns {{ gcd, x, y: BigInteger }} */ _egcd(b) { let x = BigInt(0); let y = BigInt(1); let xPrev = BigInt(1); let yPrev = BigInt(0); let a = this.value; b = b.value; while (b !== BigInt(0)) { const q = a / b; let tmp = x; x = xPrev - q * x; xPrev = tmp; tmp = y; y = yPrev - q * y; yPrev = tmp; tmp = b; b = a % b; a = tmp; } return { x: new BigInteger(xPrev), y: new BigInteger(yPrev), gcd: new BigInteger(a) }; } /** * Compute greatest common divisor between this and n * @param {BigInteger} b - Operand * @returns {BigInteger} gcd */ gcd(b) { let a = this.value; b = b.value; while (b !== BigInt(0)) { const tmp = b; b = a % b; a = tmp; } return new BigInteger(a); } /** * Shift this to the left by x, in place * @param {BigInteger} x - Shift value */ ileftShift(x) { this.value <<= x.value; return this; } /** * Shift this to the left by x * @param {BigInteger} x - Shift value * @returns {BigInteger} this << x. */ leftShift(x) { return this.clone().ileftShift(x); } /** * Shift this to the right by x, in place * @param {BigInteger} x - Shift value */ irightShift(x) { this.value >>= x.value; return this; } /** * Shift this to the right by x * @param {BigInteger} x - Shift value * @returns {BigInteger} this >> x. */ rightShift(x) { return this.clone().irightShift(x); } /** * Whether this value is equal to x * @param {BigInteger} x * @returns {Boolean} */ equal(x) { return this.value === x.value; } /** * Whether this value is less than x * @param {BigInteger} x * @returns {Boolean} */ lt(x) { return this.value < x.value; } /** * Whether this value is less than or equal to x * @param {BigInteger} x * @returns {Boolean} */ lte(x) { return this.value <= x.value; } /** * Whether this value is greater than x * @param {BigInteger} x * @returns {Boolean} */ gt(x) { return this.value > x.value; } /** * Whether this value is greater than or equal to x * @param {BigInteger} x * @returns {Boolean} */ gte(x) { return this.value >= x.value; } isZero() { return this.value === BigInt(0); } isOne() { return this.value === BigInt(1); } isNegative() { return this.value < BigInt(0); } isEven() { return !(this.value & BigInt(1)); } abs() { const res = this.clone(); if (this.isNegative()) { res.value = -res.value; } return res; } /** * Get this value as a string * @returns {String} this value. */ toString() { return this.value.toString(); } /** * Get this value as an exact Number (max 53 bits) * Fails if this value is too large * @returns {Number} */ toNumber() { const number = Number(this.value); if (number > Number.MAX_SAFE_INTEGER) { // We throw and error to conform with the bn.js implementation throw new Error('Number can only safely store up to 53 bits'); } return number; } /** * Get value of i-th bit * @param {Number} i - Bit index * @returns {Number} Bit value. */ getBit(i) { const bit = (this.value >> BigInt(i)) & BigInt(1); return (bit === BigInt(0)) ? 0 : 1; } /** * Compute bit length * @returns {Number} Bit length. */ bitLength() { const zero = new BigInteger(0); const one = new BigInteger(1); const negOne = new BigInteger(-1); // -1n >> -1n is -1n // 1n >> 1n is 0n const target = this.isNegative() ? negOne : zero; let bitlen = 1; const tmp = this.clone(); while (!tmp.irightShift(one).equal(target)) { bitlen++; } return bitlen; } /** * Compute byte length * @returns {Number} Byte length. */ byteLength() { const zero = new BigInteger(0); const negOne = new BigInteger(-1); const target = this.isNegative() ? negOne : zero; const eight = new BigInteger(8); let len = 1; const tmp = this.clone(); while (!tmp.irightShift(eight).equal(target)) { len++; } return len; } /** * Get Uint8Array representation of this number * @param {String} endian - Endianess of output array (defaults to 'be') * @param {Number} length - Of output array * @returns {Uint8Array} */ toUint8Array(endian = 'be', length) { // we get and parse the hex string (https://coolaj86.com/articles/convert-js-bigints-to-typedarrays/) // this is faster than shift+mod iterations let hex = this.value.toString(16); if (hex.length % 2 === 1) { hex = '0' + hex; } const rawLength = hex.length / 2; const bytes = new Uint8Array(length || rawLength); // parse hex const offset = length ? (length - rawLength) : 0; let i = 0; while (i < rawLength) { bytes[i + offset] = parseInt(hex.slice(2 * i, 2 * i + 2), 16); i++; } if (endian !== 'be') { bytes.reverse(); } return bytes; } }