// OpenPGP.js - An OpenPGP implementation in javascript // Copyright (C) 2018 ProtonTech AG // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3.0 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA /** * @fileoverview This module implements AES-OCB en/decryption. * @requires crypto/cipher * @requires util * @module crypto/ocb */ import ciphers from './cipher'; import util from '../util'; const blockLength = 16; const ivLength = 15; // https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2: // While OCB [RFC7253] allows the authentication tag length to be of any // number up to 128 bits long, this document requires a fixed // authentication tag length of 128 bits (16 octets) for simplicity. const tagLength = 16; const { shiftLeft, shiftRight } = util; function zeros(bytes) { return new Uint8Array(bytes); } function ntz(n) { let ntz = 0; for(let i = 1; (n & i) === 0; i <<= 1) { ntz++; } return ntz; } function set_xor(S, T) { for (let i = 0; i < S.length; i++) { S[i] ^= T[i]; } return S; } function xor(S, T) { return set_xor(S.slice(), T); } function concat(...arrays) { return util.concatUint8Array(arrays); } function double(S) { const double = S.slice(); shiftLeft(double, 1); if (S[0] & 0b10000000) { double[15] ^= 0b10000111; } return double; } function constructKeyVariables(cipher, key, text, adata) { const aes = new ciphers[cipher](key); const encipher = aes.encrypt.bind(aes); const decipher = aes.decrypt.bind(aes); const L_x = encipher(zeros(16)); const L_$ = double(L_x); const L = []; L[0] = double(L_$); const max_ntz = util.nbits(Math.max(text.length, adata.length) >> 4) - 1; for (let i = 1; i <= max_ntz; i++) { L[i] = double(L[i - 1]); } L.x = L_x; L.$ = L_$; return { encipher, decipher, L }; } function hash(kv, key, adata) { if (!adata.length) { // Fast path return zeros(16); } const { encipher, L } = kv; // // Consider A as a sequence of 128-bit blocks // const m = adata.length >> 4; const offset = zeros(16); const sum = zeros(16); for (let i = 0; i < m; i++) { set_xor(offset, L[ntz(i + 1)]); set_xor(sum, encipher(xor(offset, adata))); adata = adata.subarray(16); } // // Process any final partial block; compute final hash value // if (adata.length) { set_xor(offset, L.x); const cipherInput = zeros(16); cipherInput.set(adata, 0); cipherInput[adata.length] = 0b10000000; set_xor(cipherInput, offset); set_xor(sum, encipher(cipherInput)); } return sum; } /** * Encrypt plaintext input. * @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128' * @param {Uint8Array} plaintext The cleartext input to be encrypted * @param {Uint8Array} key The encryption key * @param {Uint8Array} nonce The nonce (15 bytes) * @param {Uint8Array} adata Associated data to sign * @returns {Promise} The ciphertext output */ async function encrypt(cipher, plaintext, key, nonce, adata) { // // Consider P as a sequence of 128-bit blocks // const m = plaintext.length >> 4; // // Key-dependent variables // const kv = constructKeyVariables(cipher, key, plaintext, adata); const { encipher, L } = kv; // // Nonce-dependent and per-encryption variables // // We assume here that TAGLEN mod 128 == 0 (tagLength === 16). const Nonce = concat(zeros(15 - nonce.length), new Uint8Array([1]), nonce); const bottom = Nonce[15] & 0b111111; Nonce[15] &= 0b11000000; const Ktop = encipher(Nonce); const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9))); // Offset_0 = Stretch[1+bottom..128+bottom] const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1); const checksum = zeros(16); const C = new Uint8Array(plaintext.length + tagLength); // // Process any whole blocks // let i; let pos = 0; for (i = 0; i < m; i++) { set_xor(offset, L[ntz(i + 1)]); C.set(xor(offset, encipher(xor(offset, plaintext))), pos); set_xor(checksum, plaintext); plaintext = plaintext.subarray(16); pos += 16; } // // Process any final partial block and compute raw tag // if (plaintext.length) { set_xor(offset, L.x); const Pad = encipher(offset); C.set(xor(plaintext, Pad), pos); // Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) const xorInput = zeros(16); xorInput.set(plaintext, 0); xorInput[plaintext.length] = 0b10000000; set_xor(checksum, xorInput); pos += plaintext.length; } const Tag = xor(encipher(xor(xor(checksum, offset), L.$)), hash(kv, key, adata)); // // Assemble ciphertext // C.set(Tag, pos); return C; } /** * Decrypt ciphertext input. * @param {String} cipher The symmetric cipher algorithm to use e.g. 'aes128' * @param {Uint8Array} ciphertext The ciphertext input to be decrypted * @param {Uint8Array} key The encryption key * @param {Uint8Array} nonce The nonce (15 bytes) * @param {Uint8Array} adata Associated data to verify * @returns {Promise} The plaintext output */ async function decrypt(cipher, ciphertext, key, nonce, adata) { // // Consider C as a sequence of 128-bit blocks // const T = ciphertext.subarray(ciphertext.length - tagLength); ciphertext = ciphertext.subarray(0, ciphertext.length - tagLength); const m = ciphertext.length >> 4; // // Key-dependent variables // const kv = constructKeyVariables(cipher, key, ciphertext, adata); const { encipher, decipher, L } = kv; // // Nonce-dependent and per-encryption variables // // We assume here that TAGLEN mod 128 == 0 (tagLength === 16). const Nonce = concat(zeros(15 - nonce.length), new Uint8Array([1]), nonce); const bottom = Nonce[15] & 0b111111; Nonce[15] &= 0b11000000; const Ktop = encipher(Nonce); const Stretch = concat(Ktop, xor(Ktop.subarray(0, 8), Ktop.subarray(1, 9))); // Offset_0 = Stretch[1+bottom..128+bottom] const offset = shiftRight(Stretch.subarray(0 + (bottom >> 3), 17 + (bottom >> 3)), 8 - (bottom & 7)).subarray(1); const checksum = zeros(16); const P = new Uint8Array(ciphertext.length); // // Process any whole blocks // let i; let pos = 0; for (i = 0; i < m; i++) { set_xor(offset, L[ntz(i + 1)]); P.set(xor(offset, decipher(xor(offset, ciphertext))), pos); set_xor(checksum, P.subarray(pos)); ciphertext = ciphertext.subarray(16); pos += 16; } // // Process any final partial block and compute raw tag // if (ciphertext.length) { set_xor(offset, L.x); const Pad = encipher(offset); P.set(xor(ciphertext, Pad), pos); // Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) const xorInput = zeros(16); xorInput.set(P.subarray(pos), 0); xorInput[ciphertext.length] = 0b10000000; set_xor(checksum, xorInput); pos += ciphertext.length; } const Tag = xor(encipher(xor(xor(checksum, offset), L.$)), hash(kv, key, adata)); // // Check for validity and assemble plaintext // if (!util.equalsUint8Array(Tag, T)) { throw new Error('Authentication tag mismatch in OCB ciphertext'); } return P; } /** * Get OCB nonce as defined by {@link https://tools.ietf.org/html/draft-ietf-openpgp-rfc4880bis-04#section-5.16.2|RFC4880bis-04, section 5.16.2}. * @param {Uint8Array} iv The initialization vector (15 bytes) * @param {Uint8Array} chunkIndex The chunk index (8 bytes) */ function getNonce(iv, chunkIndex) { const nonce = iv.slice(); for (let i = 0; i < chunkIndex.length; i++) { nonce[7 + i] ^= chunkIndex[i]; } return nonce; } export default { blockLength, ivLength, encrypt, decrypt, getNonce };