// GPG4Browsers - An OpenPGP implementation in javascript // Copyright (C) 2011 Recurity Labs GmbH // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA // // A Digital signature algorithm implementation function DSA() { // s1 = ((g**s) mod p) mod q // s1 = ((s**-1)*(sha-1(m)+(s1*x) mod q) function sign(hashalgo, m, g, p, q, x) { // If the output size of the chosen hash is larger than the number of // bits of q, the hash result is truncated to fit by taking the number // of leftmost bits equal to the number of bits of q. This (possibly // truncated) hash function result is treated as a number and used // directly in the DSA signature algorithm. var hashed_data = util.getLeftNBits(openpgp_crypto_hashData(hashalgo,m),q.bitLength()); var hash = new BigInteger(util.hexstrdump(hashed_data), 16); var k = openpgp_crypto_getRandomBigIntegerInRange(BigInteger.ONE.add(BigInteger.ONE), q.subtract(BigInteger.ONE)); var s1 = (g.modPow(k,p)).mod(q); var s2 = (k.modInverse(q).multiply(hash.add(x.multiply(s1)))).mod(q); var result = new Array(); result[0] = s1.toMPI(); result[1] = s2.toMPI(); return result; } function select_hash_algorithm(q) { var usersetting = openpgp.config.config.prefer_hash_algorithm; /* * 1024-bit key, 160-bit q, SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512 hash * 2048-bit key, 224-bit q, SHA-224, SHA-256, SHA-384, or SHA-512 hash * 2048-bit key, 256-bit q, SHA-256, SHA-384, or SHA-512 hash * 3072-bit key, 256-bit q, SHA-256, SHA-384, or SHA-512 hash */ switch (Math.round(q.bitLength() / 8)) { case 20: // 1024 bit if (usersetting != 2 && usersetting > 11 && usersetting != 10 && usersetting < 8) return 2; // prefer sha1 return usersetting; case 28: // 2048 bit if (usersetting > 11 && usersetting < 8) return 11; return usersetting; case 32: // 4096 bit // prefer sha224 if (usersetting > 10 && usersetting < 8) return 8; // prefer sha256 return usersetting; default: util.print_debug("DSA select hash algorithm: returning null for an unknown length of q"); return null; } } this.select_hash_algorithm = select_hash_algorithm; function verify(hashalgo, s1,s2,m,p,q,g,y) { var hashed_data = util.getLeftNBits(openpgp_crypto_hashData(hashalgo,m),q.bitLength()); var hash = new BigInteger(util.hexstrdump(hashed_data), 16); if (BigInteger.ZERO.compareTo(s1) > 0 || s1.compareTo(q) > 0 || BigInteger.ZERO.compareTo(s2) > 0 || s2.compareTo(q) > 0) { util.print_error("invalid DSA Signature"); return null; } var w = s2.modInverse(q); var u1 = hash.multiply(w).mod(q); var u2 = s1.multiply(w).mod(q); return g.modPow(u1,p).multiply(y.modPow(u2,p)).mod(p).mod(q); } /* * unused code. This can be used as a start to write a key generator * function. function generateKey(bitcount) { var qi = new BigInteger(bitcount, primeCenterie); var pi = generateP(q, 512); var gi = generateG(p, q, bitcount); var xi; do { xi = new BigInteger(q.bitCount(), rand); } while (x.compareTo(BigInteger.ZERO) != 1 && x.compareTo(q) != -1); var yi = g.modPow(x, p); return {x: xi, q: qi, p: pi, g: gi, y: yi}; } function generateP(q, bitlength, randomfn) { if (bitlength % 64 != 0) { return false; } var pTemp; var pTemp2; do { pTemp = randomfn(bitcount, true); pTemp2 = pTemp.subtract(BigInteger.ONE); pTemp = pTemp.subtract(pTemp2.remainder(q)); } while (!pTemp.isProbablePrime(primeCenterie) || pTemp.bitLength() != l); return pTemp; } function generateG(p, q, bitlength, randomfn) { var aux = p.subtract(BigInteger.ONE); var pow = aux.divide(q); var gTemp; do { gTemp = randomfn(bitlength); } while (gTemp.compareTo(aux) != -1 && gTemp.compareTo(BigInteger.ONE) != 1); return gTemp.modPow(pow, p); } function generateK(q, bitlength, randomfn) { var tempK; do { tempK = randomfn(bitlength, false); } while (tempK.compareTo(q) != -1 && tempK.compareTo(BigInteger.ZERO) != 1); return tempK; } function generateR(q,p) { k = generateK(q); var r = g.modPow(k, p).mod(q); return r; } function generateS(hashfn,k,r,m,q,x) { var hash = hashfn(m); s = (k.modInverse(q).multiply(hash.add(x.multiply(r)))).mod(q); return s; } */ this.sign = sign; this.verify = verify; // this.generate = generateKey; }