fork-openpgpjs/src/crypto/public_key/elliptic/ecdsa.js
larabr 02a1ed2d78
Make key fingerprint computation async (#1297)
- Make fingerprint and key ID computation async, and rely on Web Crypto
  for hashing if available
- Always set fingerprint and keyID on key parsing / generation
- Introduce `*KeyPacket.computeFingerprint()` and
  `*KeyPacket.computeFingerprintAndKeyID()` 
- Change `getKeyID` and `getFingerprint*` functions to return the
  pre-computed key ID and fingerprint, respectively
- Make `PublicKeyPacket.read` async
2021-05-05 17:39:19 +02:00

318 lines
10 KiB
JavaScript

// OpenPGP.js - An OpenPGP implementation in javascript
// Copyright (C) 2015-2016 Decentral
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3.0 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
/**
* @fileoverview Implementation of ECDSA following RFC6637 for Openpgpjs
* @module crypto/public_key/elliptic/ecdsa
* @private
*/
import enums from '../../../enums';
import util from '../../../util';
import { getRandomBytes } from '../../random';
import hash from '../../hash';
import { Curve, webCurves, privateToJWK, rawPublicToJWK, validateStandardParams } from './curves';
import { getIndutnyCurve, keyFromPrivate, keyFromPublic } from './indutnyKey';
const webCrypto = util.getWebCrypto();
const nodeCrypto = util.getNodeCrypto();
/**
* Sign a message using the provided key
* @param {module:type/oid} oid - Elliptic curve object identifier
* @param {module:enums.hash} hashAlgo - Hash algorithm used to sign
* @param {Uint8Array} message - Message to sign
* @param {Uint8Array} publicKey - Public key
* @param {Uint8Array} privateKey - Private key used to sign the message
* @param {Uint8Array} hashed - The hashed message
* @returns {Promise<{
* r: Uint8Array,
* s: Uint8Array
* }>} Signature of the message
* @async
*/
export async function sign(oid, hashAlgo, message, publicKey, privateKey, hashed) {
const curve = new Curve(oid);
if (message && !util.isStream(message)) {
const keyPair = { publicKey, privateKey };
switch (curve.type) {
case 'web': {
// If browser doesn't support a curve, we'll catch it
try {
// Need to await to make sure browser succeeds
return await webSign(curve, hashAlgo, message, keyPair);
} catch (err) {
// We do not fallback if the error is related to key integrity
// Unfortunaley Safari does not support p521 and throws a DataError when using it
// So we need to always fallback for that curve
if (curve.name !== 'p521' && (err.name === 'DataError' || err.name === 'OperationError')) {
throw err;
}
util.printDebugError("Browser did not support signing: " + err.message);
}
break;
}
case 'node': {
const signature = await nodeSign(curve, hashAlgo, message, keyPair);
return {
r: signature.r.toArrayLike(Uint8Array),
s: signature.s.toArrayLike(Uint8Array)
};
}
}
}
return ellipticSign(curve, hashed, privateKey);
}
/**
* Verifies if a signature is valid for a message
* @param {module:type/oid} oid - Elliptic curve object identifier
* @param {module:enums.hash} hashAlgo - Hash algorithm used in the signature
* @param {{r: Uint8Array,
s: Uint8Array}} signature Signature to verify
* @param {Uint8Array} message - Message to verify
* @param {Uint8Array} publicKey - Public key used to verify the message
* @param {Uint8Array} hashed - The hashed message
* @returns {Boolean}
* @async
*/
export async function verify(oid, hashAlgo, signature, message, publicKey, hashed) {
const curve = new Curve(oid);
if (message && !util.isStream(message)) {
switch (curve.type) {
case 'web':
try {
// Need to await to make sure browser succeeds
return await webVerify(curve, hashAlgo, signature, message, publicKey);
} catch (err) {
// We do not fallback if the error is related to key integrity
// Unfortunately Safari does not support p521 and throws a DataError when using it
// So we need to always fallback for that curve
if (curve.name !== 'p521' && (err.name === 'DataError' || err.name === 'OperationError')) {
throw err;
}
util.printDebugError("Browser did not support verifying: " + err.message);
}
break;
case 'node':
return nodeVerify(curve, hashAlgo, signature, message, publicKey);
}
}
const digest = (typeof hashAlgo === 'undefined') ? message : hashed;
return ellipticVerify(curve, signature, digest, publicKey);
}
/**
* Validate ECDSA parameters
* @param {module:type/oid} oid - Elliptic curve object identifier
* @param {Uint8Array} Q - ECDSA public point
* @param {Uint8Array} d - ECDSA secret scalar
* @returns {Promise<Boolean>} Whether params are valid.
* @async
*/
export async function validateParams(oid, Q, d) {
const curve = new Curve(oid);
// Reject curves x25519 and ed25519
if (curve.keyType !== enums.publicKey.ecdsa) {
return false;
}
// To speed up the validation, we try to use node- or webcrypto when available
// and sign + verify a random message
switch (curve.type) {
case 'web':
case 'node': {
const message = await getRandomBytes(8);
const hashAlgo = enums.hash.sha256;
const hashed = await hash.digest(hashAlgo, message);
try {
const signature = await sign(oid, hashAlgo, message, Q, d, hashed);
return await verify(oid, hashAlgo, signature, message, Q, hashed);
} catch (err) {
return false;
}
}
default:
return validateStandardParams(enums.publicKey.ecdsa, oid, Q, d);
}
}
//////////////////////////
// //
// Helper functions //
// //
//////////////////////////
async function ellipticSign(curve, hashed, privateKey) {
const indutnyCurve = await getIndutnyCurve(curve.name);
const key = keyFromPrivate(indutnyCurve, privateKey);
const signature = key.sign(hashed);
return {
r: signature.r.toArrayLike(Uint8Array),
s: signature.s.toArrayLike(Uint8Array)
};
}
async function ellipticVerify(curve, signature, digest, publicKey) {
const indutnyCurve = await getIndutnyCurve(curve.name);
const key = keyFromPublic(indutnyCurve, publicKey);
return key.verify(digest, signature);
}
async function webSign(curve, hashAlgo, message, keyPair) {
const len = curve.payloadSize;
const jwk = privateToJWK(curve.payloadSize, webCurves[curve.name], keyPair.publicKey, keyPair.privateKey);
const key = await webCrypto.importKey(
"jwk",
jwk,
{
"name": "ECDSA",
"namedCurve": webCurves[curve.name],
"hash": { name: enums.read(enums.webHash, curve.hash) }
},
false,
["sign"]
);
const signature = new Uint8Array(await webCrypto.sign(
{
"name": 'ECDSA',
"namedCurve": webCurves[curve.name],
"hash": { name: enums.read(enums.webHash, hashAlgo) }
},
key,
message
));
return {
r: signature.slice(0, len),
s: signature.slice(len, len << 1)
};
}
async function webVerify(curve, hashAlgo, { r, s }, message, publicKey) {
const jwk = rawPublicToJWK(curve.payloadSize, webCurves[curve.name], publicKey);
const key = await webCrypto.importKey(
"jwk",
jwk,
{
"name": "ECDSA",
"namedCurve": webCurves[curve.name],
"hash": { name: enums.read(enums.webHash, curve.hash) }
},
false,
["verify"]
);
const signature = util.concatUint8Array([r, s]).buffer;
return webCrypto.verify(
{
"name": 'ECDSA',
"namedCurve": webCurves[curve.name],
"hash": { name: enums.read(enums.webHash, hashAlgo) }
},
key,
signature,
message
);
}
async function nodeSign(curve, hashAlgo, message, keyPair) {
const sign = nodeCrypto.createSign(enums.read(enums.hash, hashAlgo));
sign.write(message);
sign.end();
const key = ECPrivateKey.encode({
version: 1,
parameters: curve.oid,
privateKey: Array.from(keyPair.privateKey),
publicKey: { unused: 0, data: Array.from(keyPair.publicKey) }
}, 'pem', {
label: 'EC PRIVATE KEY'
});
return ECDSASignature.decode(sign.sign(key), 'der');
}
async function nodeVerify(curve, hashAlgo, { r, s }, message, publicKey) {
const { default: BN } = await import('bn.js');
const verify = nodeCrypto.createVerify(enums.read(enums.hash, hashAlgo));
verify.write(message);
verify.end();
const key = SubjectPublicKeyInfo.encode({
algorithm: {
algorithm: [1, 2, 840, 10045, 2, 1],
parameters: curve.oid
},
subjectPublicKey: { unused: 0, data: Array.from(publicKey) }
}, 'pem', {
label: 'PUBLIC KEY'
});
const signature = ECDSASignature.encode({
r: new BN(r), s: new BN(s)
}, 'der');
try {
return verify.verify(key, signature);
} catch (err) {
return false;
}
}
// Originally written by Owen Smith https://github.com/omsmith
// Adapted on Feb 2018 from https://github.com/Brightspace/node-jwk-to-pem/
/* eslint-disable no-invalid-this */
const asn1 = nodeCrypto ? require('asn1.js') : undefined;
const ECDSASignature = nodeCrypto ?
asn1.define('ECDSASignature', function() {
this.seq().obj(
this.key('r').int(),
this.key('s').int()
);
}) : undefined;
const ECPrivateKey = nodeCrypto ?
asn1.define('ECPrivateKey', function() {
this.seq().obj(
this.key('version').int(),
this.key('privateKey').octstr(),
this.key('parameters').explicit(0).optional().any(),
this.key('publicKey').explicit(1).optional().bitstr()
);
}) : undefined;
const AlgorithmIdentifier = nodeCrypto ?
asn1.define('AlgorithmIdentifier', function() {
this.seq().obj(
this.key('algorithm').objid(),
this.key('parameters').optional().any()
);
}) : undefined;
const SubjectPublicKeyInfo = nodeCrypto ?
asn1.define('SubjectPublicKeyInfo', function() {
this.seq().obj(
this.key('algorithm').use(AlgorithmIdentifier),
this.key('subjectPublicKey').bitstr()
);
}) : undefined;