fork-openpgpjs/test/crypto/elliptic.js
larabr ef066183dd
Throw UnsupportedError on unknown algorithm in keys, signatures and encrypted session keys ()
The relevant packets will be considered unsupported instead of malformed.
Hence, parsing them will succeed by default (based on
`config.ignoreUnsupportedPackets`).
2022-06-07 13:51:58 +02:00

262 lines
10 KiB
JavaScript

const openpgp = typeof window !== 'undefined' && window.openpgp ? window.openpgp : require('../..');
const elliptic_curves = require('../../src/crypto/public_key/elliptic');
const hashMod = require('../../src/crypto/hash');
const config = require('../../src/config');
const util = require('../../src/util');
const sandbox = require('sinon/lib/sinon/sandbox');
const chai = require('chai');
const elliptic_data = require('./elliptic_data');
chai.use(require('chai-as-promised'));
const expect = chai.expect;
const key_data = elliptic_data.key_data;
/* eslint-disable no-invalid-this */
module.exports = () => describe('Elliptic Curve Cryptography @lightweight', function () {
const signature_data = {
priv: new Uint8Array([
0x14, 0x2B, 0xE2, 0xB7, 0x4D, 0xBD, 0x1B, 0x22,
0x4D, 0xDF, 0x96, 0xA4, 0xED, 0x8E, 0x5B, 0xF9,
0xBD, 0xD3, 0xFE, 0xAE, 0x3F, 0xB2, 0xCF, 0xEE,
0xA7, 0xDB, 0xD0, 0x58, 0xA7, 0x47, 0xF8, 0x7C
]),
pub: new Uint8Array([
0x04,
0xD3, 0x36, 0x11, 0xF9, 0xF9, 0xAB, 0x39, 0x23,
0x15, 0xB9, 0x71, 0x7B, 0x2A, 0x0B, 0xA6, 0x6D,
0x39, 0x6D, 0x64, 0x87, 0x22, 0x9A, 0xA3, 0x0A,
0x55, 0x27, 0x14, 0x2E, 0x1C, 0x61, 0xA2, 0x8A,
0xDA, 0x4E, 0x8F, 0xCE, 0x04, 0xBE, 0xE2, 0xC3,
0x82, 0x0B, 0x21, 0x4C, 0xBC, 0xED, 0x0E, 0xE2,
0xF1, 0x14, 0x33, 0x9A, 0x86, 0x5F, 0xC6, 0xF9,
0x8E, 0x95, 0x24, 0x10, 0x1F, 0x0F, 0x13, 0xE4
]),
message: new Uint8Array([
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
]),
hashed: new Uint8Array([
0xbe, 0x45, 0xcb, 0x26, 0x05, 0xbf, 0x36, 0xbe,
0xbd, 0xe6, 0x84, 0x84, 0x1a, 0x28, 0xf0, 0xfd,
0x43, 0xc6, 0x98, 0x50, 0xa3, 0xdc, 0xe5, 0xfe,
0xdb, 0xa6, 0x99, 0x28, 0xee, 0x3a, 0x89, 0x91
]),
signature: {
r: new Uint8Array([
0xF1, 0x78, 0x1C, 0xA5, 0x13, 0x21, 0x0C, 0xBA,
0x6F, 0x18, 0x5D, 0xB3, 0x01, 0xE2, 0x17, 0x1B,
0x67, 0x65, 0x7F, 0xC6, 0x1F, 0x50, 0x12, 0xFB,
0x2F, 0xD3, 0xA4, 0x29, 0xE3, 0xC2, 0x44, 0x9F
]),
s: new Uint8Array([
0x7F, 0x08, 0x69, 0x6D, 0xBB, 0x1B, 0x9B, 0xF2,
0x62, 0x1C, 0xCA, 0x80, 0xC6, 0x15, 0xB2, 0xAE,
0x60, 0x50, 0xD1, 0xA7, 0x1B, 0x32, 0xF3, 0xB1,
0x01, 0x0B, 0xDF, 0xC6, 0xAB, 0xF0, 0xEB, 0x01
])
}
};
describe('Basic Operations', function () {
it('Creating curve from name or oid', function (done) {
Object.keys(openpgp.enums.curve).forEach(function(name_or_oid) {
expect(new elliptic_curves.Curve(name_or_oid)).to.exist;
});
Object.values(openpgp.enums.curve).forEach(function(name_or_oid) {
expect(new elliptic_curves.Curve(name_or_oid)).to.exist;
});
done();
});
it('Creating KeyPair', function () {
if (!config.useIndutnyElliptic && !util.getNodeCrypto()) {
this.skip();
}
const names = config.useIndutnyElliptic ? ['p256', 'p384', 'p521', 'secp256k1', 'curve25519', 'brainpoolP256r1', 'brainpoolP384r1', 'brainpoolP512r1'] :
['p256', 'p384', 'p521', 'curve25519'];
return Promise.all(names.map(function (name) {
const curve = new elliptic_curves.Curve(name);
return curve.genKeyPair().then(keyPair => {
expect(keyPair).to.exist;
});
}));
});
it('Signature verification', function (done) {
expect(
elliptic_curves.ecdsa.verify('p256', 8, signature_data.signature, signature_data.message, signature_data.pub, signature_data.hashed)
).to.eventually.be.true.notify(done);
});
it('Invalid signature', function (done) {
expect(
elliptic_curves.ecdsa.verify('p256', 8, signature_data.signature, signature_data.message, key_data.p256.pub, signature_data.hashed)
).to.eventually.be.false.notify(done);
});
it('Signature generation', function () {
return elliptic_curves.ecdsa.sign('p256', 8, signature_data.message, key_data.p256.pub, key_data.p256.priv, signature_data.hashed).then(async signature => {
await expect(
elliptic_curves.ecdsa.verify('p256', 8, signature, signature_data.message, key_data.p256.pub, signature_data.hashed)
).to.eventually.be.true;
});
});
});
describe('ECDSA signature', function () {
let sinonSandbox;
let getWebCryptoStub;
let getNodeCryptoStub;
beforeEach(function () {
sinonSandbox = sandbox.create();
});
afterEach(function () {
sinonSandbox.restore();
});
const disableNative = () => {
enableNative();
// stubbed functions return undefined
getWebCryptoStub = sinonSandbox.stub(util, 'getWebCrypto');
getNodeCryptoStub = sinonSandbox.stub(util, 'getNodeCrypto');
};
const enableNative = () => {
getWebCryptoStub && getWebCryptoStub.restore();
getNodeCryptoStub && getNodeCryptoStub.restore();
};
const verify_signature = async function (oid, hash, r, s, message, pub) {
if (util.isString(message)) {
message = util.stringToUint8Array(message);
} else if (!util.isUint8Array(message)) {
message = new Uint8Array(message);
}
const ecdsa = elliptic_curves.ecdsa;
return ecdsa.verify(
oid, hash, { r: new Uint8Array(r), s: new Uint8Array(s) }, message, new Uint8Array(pub), await hashMod.digest(hash, message)
);
};
const secp256k1_point = new Uint8Array([
0x04,
0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC,
0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B, 0x07,
0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, 0xD9,
0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17, 0x98,
0x48, 0x3A, 0xDA, 0x77, 0x26, 0xA3, 0xC4, 0x65,
0x5D, 0xA4, 0xFB, 0xFC, 0x0E, 0x11, 0x08, 0xA8,
0xFD, 0x17, 0xB4, 0x48, 0xA6, 0x85, 0x54, 0x19,
0x9C, 0x47, 0xD0, 0x8F, 0xFB, 0x10, 0xD4, 0xB8
]);
const secp256k1_invalid_point = new Uint8Array([
0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
]);
const secp256k1_invalid_point_format = new Uint8Array([
0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
]);
it('Invalid curve oid', function () {
return Promise.all([
expect(verify_signature(
'invalid oid', 8, [], [], [], []
)).to.be.rejectedWith(Error, /Unknown curve/),
expect(verify_signature(
'\x00', 8, [], [], [], []
)).to.be.rejectedWith(Error, /Unknown curve/)
]);
});
it('Invalid public key', async function () {
if (!config.useIndutnyElliptic && !util.getNodeCrypto()) {
this.skip(); // webcrypto does not implement secp256k1
}
if (util.getNodeCrypto()) {
await expect(verify_signature(
'secp256k1', 8, [], [], [], []
)).to.eventually.be.false;
await expect(verify_signature(
'secp256k1', 8, [], [], [], secp256k1_invalid_point_format
)).to.eventually.be.false;
}
if (config.useIndutnyElliptic) {
disableNative();
await expect(verify_signature(
'secp256k1', 8, [], [], [], []
)).to.be.rejectedWith(Error, /Unknown point format/);
await expect(verify_signature(
'secp256k1', 8, [], [], [], secp256k1_invalid_point_format
)).to.be.rejectedWith(Error, /Unknown point format/);
}
});
it('Invalid point', async function () {
if (!config.useIndutnyElliptic && !util.getNodeCrypto()) {
this.skip();
}
if (util.getNodeCrypto()) {
await expect(verify_signature(
'secp256k1', 8, [], [], [], secp256k1_invalid_point
)).to.eventually.be.false;
}
if (config.useIndutnyElliptic) {
disableNative();
await expect(verify_signature(
'secp256k1', 8, [], [], [], secp256k1_invalid_point
)).to.be.rejectedWith(Error, /Invalid elliptic public key/);
}
});
it('Invalid signature', function (done) {
if (!config.useIndutnyElliptic && !util.getNodeCrypto()) {
this.skip();
}
expect(verify_signature(
'secp256k1', 8, [], [], [], secp256k1_point
)).to.eventually.be.false.notify(done);
});
const p384_message = new Uint8Array([
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF
]);
const p384_r = new Uint8Array([
0x9D, 0x07, 0xCA, 0xA5, 0x9F, 0xBE, 0xB8, 0x76,
0xA9, 0xB9, 0x66, 0x0F, 0xA0, 0x64, 0x70, 0x5D,
0xE6, 0x37, 0x40, 0x43, 0xD0, 0x8E, 0x40, 0xA8,
0x8B, 0x37, 0x83, 0xE7, 0xBC, 0x1C, 0x4C, 0x86,
0xCB, 0x3C, 0xD5, 0x9B, 0x68, 0xF0, 0x65, 0xEB,
0x3A, 0xB6, 0xD6, 0xA6, 0xCF, 0x85, 0x3D, 0xA9
]);
const p384_s = new Uint8Array([
0x32, 0x85, 0x78, 0xCC, 0xEA, 0xC5, 0x22, 0x83,
0x10, 0x73, 0x1C, 0xCF, 0x10, 0x8A, 0x52, 0x11,
0x8E, 0x49, 0x9E, 0xCF, 0x7E, 0x17, 0x18, 0xC3,
0x11, 0x11, 0xBC, 0x0F, 0x6D, 0x98, 0xE2, 0x16,
0x68, 0x58, 0x23, 0x1D, 0x11, 0xEF, 0x3D, 0x21,
0x30, 0x75, 0x24, 0x39, 0x48, 0x89, 0x03, 0xDC
]);
it('Valid signature', function (done) {
expect(verify_signature('p384', 8, p384_r, p384_s, p384_message, key_data.p384.pub))
.to.eventually.be.true.notify(done);
});
it('Sign and verify message', function () {
const curve = new elliptic_curves.Curve('p521');
return curve.genKeyPair().then(async keyPair => {
const keyPublic = new Uint8Array(keyPair.publicKey);
const keyPrivate = new Uint8Array(keyPair.privateKey);
const oid = curve.oid;
const message = p384_message;
return elliptic_curves.ecdsa.sign(oid, 10, message, keyPublic, keyPrivate, await hashMod.digest(10, message)).then(async signature => {
await expect(elliptic_curves.ecdsa.verify(oid, 10, signature, message, keyPublic, await hashMod.digest(10, message)))
.to.eventually.be.true;
});
});
});
});
});