
The changes do not affect the public API: `RandomBuffer` was used internally for secure randomness generation before `crypto.getRandomValues` was made available to WebWorkers, requiring generating randomness in the main thread. As a result of the change, the internal `getRandomBytes()` and some functions that use it are no longer async.
148 lines
4.5 KiB
JavaScript
148 lines
4.5 KiB
JavaScript
// GPG4Browsers - An OpenPGP implementation in javascript
|
|
// Copyright (C) 2011 Recurity Labs GmbH
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 3.0 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
/**
|
|
* @fileoverview ElGamal implementation
|
|
* @module crypto/public_key/elgamal
|
|
* @private
|
|
*/
|
|
|
|
import util from '../../util';
|
|
import { getRandomBigInteger } from '../random';
|
|
import { emeEncode, emeDecode } from '../pkcs1';
|
|
|
|
/**
|
|
* ElGamal Encryption function
|
|
* Note that in OpenPGP, the message needs to be padded with PKCS#1 (same as RSA)
|
|
* @param {Uint8Array} data - To be padded and encrypted
|
|
* @param {Uint8Array} p
|
|
* @param {Uint8Array} g
|
|
* @param {Uint8Array} y
|
|
* @returns {Promise<{ c1: Uint8Array, c2: Uint8Array }>}
|
|
* @async
|
|
*/
|
|
export async function encrypt(data, p, g, y) {
|
|
const BigInteger = await util.getBigInteger();
|
|
p = new BigInteger(p);
|
|
g = new BigInteger(g);
|
|
y = new BigInteger(y);
|
|
|
|
const padded = emeEncode(data, p.byteLength());
|
|
const m = new BigInteger(padded);
|
|
|
|
// OpenPGP uses a "special" version of ElGamal where g is generator of the full group Z/pZ*
|
|
// hence g has order p-1, and to avoid that k = 0 mod p-1, we need to pick k in [1, p-2]
|
|
const k = await getRandomBigInteger(new BigInteger(1), p.dec());
|
|
return {
|
|
c1: g.modExp(k, p).toUint8Array(),
|
|
c2: y.modExp(k, p).imul(m).imod(p).toUint8Array()
|
|
};
|
|
}
|
|
|
|
/**
|
|
* ElGamal Encryption function
|
|
* @param {Uint8Array} c1
|
|
* @param {Uint8Array} c2
|
|
* @param {Uint8Array} p
|
|
* @param {Uint8Array} x
|
|
* @param {Uint8Array} randomPayload - Data to return on unpadding error, instead of throwing
|
|
* (needed for constant-time processing)
|
|
* @returns {Promise<Uint8Array>} Unpadded message.
|
|
* @throws {Error} on decryption error, unless `randomPayload` is given
|
|
* @async
|
|
*/
|
|
export async function decrypt(c1, c2, p, x, randomPayload) {
|
|
const BigInteger = await util.getBigInteger();
|
|
c1 = new BigInteger(c1);
|
|
c2 = new BigInteger(c2);
|
|
p = new BigInteger(p);
|
|
x = new BigInteger(x);
|
|
|
|
const padded = c1.modExp(x, p).modInv(p).imul(c2).imod(p);
|
|
return emeDecode(padded.toUint8Array('be', p.byteLength()), randomPayload);
|
|
}
|
|
|
|
/**
|
|
* Validate ElGamal parameters
|
|
* @param {Uint8Array} p - ElGamal prime
|
|
* @param {Uint8Array} g - ElGamal group generator
|
|
* @param {Uint8Array} y - ElGamal public key
|
|
* @param {Uint8Array} x - ElGamal private exponent
|
|
* @returns {Promise<Boolean>} Whether params are valid.
|
|
* @async
|
|
*/
|
|
export async function validateParams(p, g, y, x) {
|
|
const BigInteger = await util.getBigInteger();
|
|
p = new BigInteger(p);
|
|
g = new BigInteger(g);
|
|
y = new BigInteger(y);
|
|
|
|
const one = new BigInteger(1);
|
|
// Check that 1 < g < p
|
|
if (g.lte(one) || g.gte(p)) {
|
|
return false;
|
|
}
|
|
|
|
// Expect p-1 to be large
|
|
const pSize = new BigInteger(p.bitLength());
|
|
const n1023 = new BigInteger(1023);
|
|
if (pSize.lt(n1023)) {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* g should have order p-1
|
|
* Check that g ** (p-1) = 1 mod p
|
|
*/
|
|
if (!g.modExp(p.dec(), p).isOne()) {
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Since p-1 is not prime, g might have a smaller order that divides p-1
|
|
* We want to make sure that the order is large enough to hinder a small subgroup attack
|
|
*
|
|
* We just check g**i != 1 for all i up to a threshold
|
|
*/
|
|
let res = g;
|
|
const i = new BigInteger(1);
|
|
const threshold = new BigInteger(2).leftShift(new BigInteger(17)); // we want order > threshold
|
|
while (i.lt(threshold)) {
|
|
res = res.mul(g).imod(p);
|
|
if (res.isOne()) {
|
|
return false;
|
|
}
|
|
i.iinc();
|
|
}
|
|
|
|
/**
|
|
* Re-derive public key y' = g ** x mod p
|
|
* Expect y == y'
|
|
*
|
|
* Blinded exponentiation computes g**{r(p-1) + x} to compare to y
|
|
*/
|
|
x = new BigInteger(x);
|
|
const two = new BigInteger(2);
|
|
const r = await getRandomBigInteger(two.leftShift(pSize.dec()), two.leftShift(pSize)); // draw r of same size as p-1
|
|
const rqx = p.dec().imul(r).iadd(x);
|
|
if (!y.equal(g.modExp(rqx, p))) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|