fork-openpgpjs/test/crypto/ecdh.js
larabr 1c07d268b8 crypto-refresh: add support for new X25519 key and PKESK format
As specified in openpgp-crypto-refresh-09.

Instead of encoding the symmetric key algorithm in the PKESK ciphertext (requiring padding),
the symmetric key algorithm is left unencrypted.

Co-authored-by: Lukas Burkhalter <lukas.burkhalter@proton.ch>
2023-07-25 10:17:09 +02:00

255 lines
10 KiB
JavaScript

const sandbox = require('sinon/lib/sinon/sandbox');
const { use: chaiUse, expect } = require('chai');
chaiUse(require('chai-as-promised'));
const openpgp = typeof window !== 'undefined' && window.openpgp ? window.openpgp : require('../..');
const OID = require('../../src/type/oid');
const KDFParams = require('../../src/type/kdf_params');
const elliptic_curves = require('../../src/crypto/public_key/elliptic');
const util = require('../../src/util');
const elliptic_data = require('./elliptic_data');
const random = require('../../src/crypto/random');
const key_data = elliptic_data.key_data;
/* eslint-disable no-invalid-this */
module.exports = () => describe('ECDH key exchange @lightweight', function () {
const decrypt_message = function (oid, hash, cipher, priv, pub, ephemeral, data, fingerprint) {
if (util.isString(data)) {
data = util.stringToUint8Array(data);
} else {
data = new Uint8Array(data);
}
return Promise.resolve().then(() => {
const curve = new elliptic_curves.Curve(oid);
return elliptic_curves.ecdh.decrypt(
new OID(curve.oid),
new KDFParams({ cipher, hash }),
new Uint8Array(ephemeral),
data,
new Uint8Array(pub),
new Uint8Array(priv),
new Uint8Array(fingerprint)
);
});
};
const secp256k1_value = new Uint8Array([
0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
]);
const secp256k1_point = new Uint8Array([
0x04,
0x79, 0xBE, 0x66, 0x7E, 0xF9, 0xDC, 0xBB, 0xAC,
0x55, 0xA0, 0x62, 0x95, 0xCE, 0x87, 0x0B, 0x07,
0x02, 0x9B, 0xFC, 0xDB, 0x2D, 0xCE, 0x28, 0xD9,
0x59, 0xF2, 0x81, 0x5B, 0x16, 0xF8, 0x17, 0x98,
0x48, 0x3A, 0xDA, 0x77, 0x26, 0xA3, 0xC4, 0x65,
0x5D, 0xA4, 0xFB, 0xFC, 0x0E, 0x11, 0x08, 0xA8,
0xFD, 0x17, 0xB4, 0x48, 0xA6, 0x85, 0x54, 0x19,
0x9C, 0x47, 0xD0, 0x8F, 0xFB, 0x10, 0xD4, 0xB8
]);
const secp256k1_invalid_point = new Uint8Array([
0x04,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
]);
const secp256k1_data = new Uint8Array([
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
]);
it('Invalid curve oid', function (done) {
expect(decrypt_message(
'', 2, 7, [], [], [], [], []
)).to.be.rejectedWith(Error, /Unknown curve/).notify(done);
});
it('Invalid ephemeral key', function (done) {
if (!openpgp.config.useIndutnyElliptic && !util.getNodeCrypto()) {
this.skip();
}
expect(decrypt_message(
'secp256k1', 2, 7, [], [], [], [], []
)).to.be.rejectedWith(Error, /Private key is not valid for specified curve|Unknown point format/).notify(done);
});
it('Invalid elliptic public key', function (done) {
if (!openpgp.config.useIndutnyElliptic && !util.getNodeCrypto()) {
this.skip();
}
expect(decrypt_message(
'secp256k1', 2, 7, secp256k1_value, secp256k1_point, secp256k1_invalid_point, secp256k1_data, []
)).to.be.rejectedWith(Error, /Public key is not valid for specified curve|Failed to translate Buffer to a EC_POINT|Invalid elliptic public key/).notify(done);
});
it('Invalid key data integrity', function (done) {
if (!openpgp.config.useIndutnyElliptic && !util.getNodeCrypto()) {
this.skip();
}
expect(decrypt_message(
'secp256k1', 2, 7, secp256k1_value, secp256k1_point, secp256k1_point, secp256k1_data, []
)).to.be.rejectedWith(Error, /Key Data Integrity failed/).notify(done);
});
const Q1 = new Uint8Array([
64,
48, 226, 162, 114, 194, 194, 67, 214,
199, 10, 173, 22, 216, 240, 197, 202,
114, 49, 127, 107, 152, 58, 119, 48,
234, 194, 192, 66, 53, 165, 137, 93
]);
const d1 = new Uint8Array([
65, 200, 132, 198, 77, 86, 126, 196,
247, 169, 156, 201, 32, 52, 3, 198,
127, 144, 139, 47, 153, 239, 64, 235,
61, 7, 17, 214, 64, 211, 215, 80
]);
const Q2 = new Uint8Array([
64,
154, 115, 36, 108, 33, 153, 64, 184,
25, 139, 67, 25, 178, 194, 227, 53,
254, 40, 101, 213, 28, 121, 154, 62,
27, 99, 92, 126, 33, 223, 122, 91
]);
const d2 = new Uint8Array([
123, 99, 163, 24, 201, 87, 0, 9,
204, 21, 154, 5, 5, 5, 127, 157,
237, 95, 76, 117, 89, 250, 64, 178,
72, 69, 69, 58, 89, 228, 113, 112
]);
const fingerprint1 = new Uint8Array([
177, 183,
116, 123, 76, 133, 245, 212, 151, 243, 236,
71, 245, 86, 3, 168, 101, 56, 209, 105
]);
const fingerprint2 = new Uint8Array([
177, 83,
123, 123, 76, 133, 245, 212, 151, 243, 236,
71, 245, 86, 3, 168, 101, 74, 209, 105
]);
const ecdh = elliptic_curves.ecdh;
it('Invalid curve', async function () {
if (!openpgp.config.useIndutnyElliptic && !util.getNodeCrypto()) {
this.skip();
}
const curve = new elliptic_curves.Curve('secp256k1');
const oid = new OID(curve.oid);
const kdfParams = new KDFParams({ hash: curve.hash, cipher: curve.cipher });
const data = util.stringToUint8Array('test');
expect(
ecdh.encrypt(oid, kdfParams, data, Q1, fingerprint1)
).to.be.rejectedWith(Error, /Public key is not valid for specified curve|Failed to translate Buffer to a EC_POINT|Unknown point format/);
});
it('Different keys', async function () {
const curve = new elliptic_curves.Curve('curve25519');
const oid = new OID(curve.oid);
const kdfParams = new KDFParams({ hash: curve.hash, cipher: curve.cipher });
const data = util.stringToUint8Array('test');
const { publicKey: V, wrappedKey: C } = await ecdh.encrypt(oid, kdfParams, data, Q1, fingerprint1);
await expect(
ecdh.decrypt(oid, kdfParams, V, C, Q2, d2, fingerprint1)
).to.be.rejectedWith(/Key Data Integrity failed/);
});
it('Invalid fingerprint', async function () {
const curve = new elliptic_curves.Curve('curve25519');
const oid = new OID(curve.oid);
const kdfParams = new KDFParams({ hash: curve.hash, cipher: curve.cipher });
const data = util.stringToUint8Array('test');
const { publicKey: V, wrappedKey: C } = await ecdh.encrypt(oid, kdfParams, data, Q2, fingerprint1);
await expect(
ecdh.decrypt(oid, kdfParams, V, C, Q2, d2, fingerprint2)
).to.be.rejectedWith(/Key Data Integrity failed/);
});
it('Successful exchange x25519 (legacy)', async function () {
const curve = new elliptic_curves.Curve('curve25519');
const oid = new OID(curve.oid);
const kdfParams = new KDFParams({ hash: curve.hash, cipher: curve.cipher });
const data = util.stringToUint8Array('test');
const { publicKey: V, wrappedKey: C } = await ecdh.encrypt(oid, kdfParams, data, Q1, fingerprint1);
expect(await ecdh.decrypt(oid, kdfParams, V, C, Q1, d1, fingerprint1)).to.deep.equal(data);
});
it('Successful exchange x25519', async function () {
const { ecdhX } = elliptic_curves;
const data = random.getRandomBytes(32);
// Bob's keys from https://www.rfc-editor.org/rfc/rfc7748#section-6.1
const b = util.hexToUint8Array('5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb');
const K_B = util.hexToUint8Array('de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f');
const { ephemeralPublicKey, wrappedKey } = await ecdhX.encrypt(openpgp.enums.publicKey.x25519, data, K_B);
expect(await ecdhX.decrypt(openpgp.enums.publicKey.x25519, ephemeralPublicKey, wrappedKey, K_B, b)).to.deep.equal(data);
});
['p256', 'p384', 'p521'].forEach(curveName => {
it(`NIST ${curveName} - Successful exchange`, async function () {
const curve = new elliptic_curves.Curve(curveName);
const oid = new OID(curve.oid);
const kdfParams = new KDFParams({ hash: curve.hash, cipher: curve.cipher });
const data = util.stringToUint8Array('test');
const Q = key_data[curveName].pub;
const d = key_data[curveName].priv;
const { publicKey: V, wrappedKey: C } = await ecdh.encrypt(oid, kdfParams, data, Q, fingerprint1);
expect(await ecdh.decrypt(oid, kdfParams, V, C, Q, d, fingerprint1)).to.deep.equal(data);
});
});
describe('Comparing decrypting with and without native crypto', () => {
let sinonSandbox;
let getWebCryptoStub;
let getNodeCryptoStub;
beforeEach(function () {
sinonSandbox = sandbox.create();
});
afterEach(function () {
sinonSandbox.restore();
});
const disableNative = () => {
enableNative();
// stubbed functions return undefined
getWebCryptoStub = sinonSandbox.stub(util, 'getWebCrypto');
getNodeCryptoStub = sinonSandbox.stub(util, 'getNodeCrypto');
};
const enableNative = () => {
getWebCryptoStub && getWebCryptoStub.restore();
getNodeCryptoStub && getNodeCryptoStub.restore();
};
['p256', 'p384', 'p521'].forEach(curveName => {
it(`NIST ${curveName}`, async function () {
const nodeCrypto = util.getNodeCrypto();
const webCrypto = util.getWebCrypto();
if (!nodeCrypto && !webCrypto) {
this.skip();
}
const curve = new elliptic_curves.Curve(curveName);
const oid = new OID(curve.oid);
const kdfParams = new KDFParams({ hash: curve.hash, cipher: curve.cipher });
const data = util.stringToUint8Array('test');
const Q = key_data[curveName].pub;
const d = key_data[curveName].priv;
const { publicKey: V, wrappedKey: C } = await ecdh.encrypt(oid, kdfParams, data, Q, fingerprint1);
const nativeDecryptSpy = webCrypto ? sinonSandbox.spy(webCrypto, 'deriveBits') : sinonSandbox.spy(nodeCrypto, 'createECDH');
expect(await ecdh.decrypt(oid, kdfParams, V, C, Q, d, fingerprint1)).to.deep.equal(data);
disableNative();
expect(await ecdh.decrypt(oid, kdfParams, V, C, Q, d, fingerprint1)).to.deep.equal(data);
if (curveName !== 'p521') { // safari does not implement p521 in webcrypto
expect(nativeDecryptSpy.calledOnce).to.be.true;
}
});
});
});
});